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In this paper, we consider the following wave equation with delay term on the dynamical control
upt (2, ) — Uze(2,t) = 0 in 10, 1[Xx (0, +00)
w(0,t) =0V t € (0, +00)
uzy(1,) +n(t) =0Vt e (0,400)

(1.1)
ne(t) —ur(1,8) + Bin(t) + Ban(t —7) =0 V t € (0,400)
u(~,0) = Uo, ut('ao) = U1 in}oal[a 77(0) =T"o eR

nit—7)=fo(t—7)Vte(0r),

where n stands for the dynamical control, 7 > 0 denotes the time delay, 81 and [ are positive
constants. Note that the initial data (ug,u1, fo) belong to a suitable space. The damping of the
system is made via the indirect damping mechanism.

It is well known that if 83 = 0, that is to say, in the absence of delay, the energy of problem
decays polynomially to zero with the rate ¢t~1; see for instance Wehbe [10] for one dimensional case
and Toufayli [9] for higher dimension. In this paper, staying on the one dimensional space, we
purpose a dynamical boundary moment control 1 which contains a time delay term 7 and we look
for how to stabilize the system using a frequency domain approach. To do that, we use prop-
erties of the stability of the undelayed one. To our knowledge polynomial stability with delay term
has not yet been done, even if the initial system, that is, without the time delay, decays polynomially.

The paper is organized as follows: section 2 is devoted to the well posedness while the section
3 deals with the strong stability of problem (|1.1); in section 4 we establish the non uniform stabil-
ity, and finally in section 5 we prove the rational stability of problem (|L.1J).

Throughout this paper, we assume that

B2 < Pr. (1.2)

2 Well posedness
Here we study the well posedness for the problem ([1.1)) using the semigroup theory. In order to

manage the parts of the problem (1.1) containing the delay term, in other words, to give to the
term containing the delay a full notation, we set

z(p,t) =n(t—71p), pe(0,1),t>0. (2.1)

Let us set

s=t—Tp. (2.2)
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On the one hand we can easily compute

alot) = gl
O s
= 7'(s)

which implies
ze(p,t) =1'(t —7p).

On the other hand we have

Wt) = ols)

which implies

ze(p,t) = =0/ (t — 7p).
Eliminating n’(t — 7p) in (2.3)) and (2.4) leads to
T21(p; 1) + 2,(p, 1) = 0.

Otherwise from (2.1)) one can write
z(1,t) =n(t — 7).

From (2.6, the fourth equation of ([L.1) may be rewritten as

ne(t) — ug(1,1) + Bin(t) + Boz(1,8) =0 YV t € (0, +00).

Moreover from ([2.1)) follows

and with the last equation of (1.1]) we get

2(p,0) = n(—=7p) = fo(—7p)

what means

z(p,0) = fo(=7p).
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The problem is now equivalently to
Ut (2, 1) — Ugy(x,t) =0 in ]0, 1[x (0, +00)
Tz (p,t) + 2p(p,t) =0, pe€ (0,1), t>0
u(0,¢) =0V t € (0, +00)
ug(1,8) +n(t) =0V t € (0, +00)
(2.10)
ne(t) — ug(1,¢) + Bin(t) + B22(1,t) =0 V t € (0,+00)

u(70) = Ug, Ut(',O) =up in ]Oa 1[ and 77(0) =To

z(0,t) =n(t), t>0

2(p,0) = fo(=7p), p€(0,1).

The well posedness of problem (1.1f) follows from standard semigroup theory.

If we denote by
T
U= (uvuhnaZ) )

one has from (2.10])
T
Uy = (ug, uge, 1, ) = (utvuwxvut(lat) — Bin(t) — B22(1,1), _T_lzp) .
Therefore problem ([2.10) can be rewritten as:

U, = AU
{ (2.11)

U0) = (ug, ur, o, fo(— 7)),

where the operator A is defined by

A(’U,7U777,Z)T = (v,um, v(l) = p1in — P2z(1), —T_lzp)T,

with domain
. 2(0) =n
D(A) =1 (u,v,nm,2) € (H*(0,1)NV) xV xR x H*0,1) ,

where
V ={ueH(0,1),u(0) =0} .

Denote by H the Hilbert space as below

H =V x L*(0,1) x R x L*(0,1)
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equipped with the norm

2
T 2
o )T = lualao ) + Iola 1 + 0l +CllzlEa0,0
where ( is a positive constant verifying

61 < ¢ < 7(2B1 — B2) (2.12)

and the natural associated inner product

* 1 L - o 1
* > =/ (uzu;—i-vv*) d:v+7717*+</ 2(p)z*(p) dp.
0 0

H

/\
SIS IS A
IS IS
*

We can now state the following existence results.

Theorem 2.1.
Assume that (1.2)) holds. Then for any datum Uy = (ug, u1, o, fo) belongs to H, then the problem
has one and only one weak solution U = (u,us,n, z) verifying:

{ ue C([0,00), V)N C* ([0,00), L*(0,1)) (2.13)

n € C ([0, 00)

Moreover, if Uy = (ug, u1,no, fo) belongs to D(A), then problem has one and only one strong
solution U = (u,ug,n, z) which satisfies

{ u € C([0,00), H2(0,1) N V) N C* ([0, 0), V) N C2 ([0, 0), L*(0, 1)) (2.14)
[ .

n € C([0,00)).

Proof. We have

u u v u
A v v _ U v
< U > < o(1) = Bin—B22(1) || >
z z H —’7'712p z Y

1 1
_ / vos dz + / U dz + ((1) = Biy — Boz(1)) 7
0 0

¢ [ oz e
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Using Green formula, Cauchy Schwarz’s inequality and the definition of D (A) we obtain

(4

> = R (1o (1,)0(D) = up(0.)0(0) + (v(1) = By — B2(1)) 7

H

[SEES IS IS
NI e

3G P + 56 )
= 3 (D) + R (1) ~ Bin — Boz()T) — 5 ()P
56 O

= bl — B () — 5 ) + 5 O

< Bl + Balnz(V)] - 5 W + 20 ()

B2 ¢

< il 2P+ 2 - S ) + S (0.

§T
Recalling the definition of D(A) the above inequality becomes

R <A > < <—51 + % + 271) nl* + @2 - 271) ()]

H
Now the relation ([2.12)) allows to conclude that

{4

which implies that the operator A is dissipative.
Let us prove that the operator A\I — A is surjective for at least one A > 0.
For (f,g,h, k)" € H, we look for (u,v,n,2)" € D(A) solution of

SIS IS AR
I S A

[SEES IS IS
ISES IS A

Au—v=Ff in ]0,1[
A —Ugy =g in 10, 1]
2.15
M1 (0(1) ~ B — Ba=(1) = h (219)
MNe+771z, =k in ]0, 1].
Assuming that we have found 7 and z with the appropriate regularity with the condition
2(0) = 7.
We can determine z by solving the system
-1 .
T 'z, +Az=k in]0,1]
{ 2(0) = 1. (2.16)
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We obtain that )
2(p) = ne NP + Te_’\”’/ k(0)er do. (2.17)
0

and in particular
2(1) =ne " 4+ 1e A /1 k(0)er do.
0
The first equation of directly involves
v=Au—f. (2.18)
Then using the third equation of , we find

_ Au(1) f(1) + Bare™>T fol k(o) er? do — h(1) (2.19)
TNt B N+ B+ e ' '
At this step it remains to determine w in order to conclude with proof. Indeed, as seen before, the
determination of u involves that of the others components v, n and z. From the above, it follows
that the function wu verifies

—Ugy + N2u =g+ \f in ]0, 1]

u(0) =0 2.20
W+ u(1) F() + Bare T [L () €77 do — h(1) (2.20)

TN B+ Bare > N+ Bi + Bae

By using Lax-Milgram’s Lemma, the problem ([2.20) admits a unique weak solution. Indeed multi-
plying the first equation by ¢ € V and by integrating formally by parts on [0, 1] we get

a(u,d) = F(¢),V eV, (2.21)
where the bilinear and continuous form a is given by

Au(1)

Wfﬁ(l) VugeV,

1
a(u, ¢) = / (um¢x + /\2u¢) dx +
0
while the linear form F is

f(1) + Bare T fol k(o) er do — h(1)
A+ B+ 526_)‘7

Since a is clearly strongly coercive on V and F is continuous on V', by Lax-Milgram’s Lemma,
problem admits a unique solution v € V. By taking test functions v € D(0; 1), we recover
the first identity of . This guarantees that u belongs to H?(0,1). Using now Green’s formula,
we see that u satisfies the third identity of .

Finally, we define v and n by setting

F(¢)=/O (g+Af)odx + (1), VoeV.

v=MAu— fand n = —u,(1)

This shows that the operator A is m-dissipative on H and it generates a Cy semigroup of contractions
in H, under Lumer-Phillips theorem. So, we have found (u,v,7,2)” € D(A) which verifies (2.20)).
The proof ends by using the Hille-Yosida theorem. O
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3 Strong stability

The main results of this section reads as follows.

Theorem 3.1.
The Cy-semigroup (et““)t>0 1s strongly stable on the energy space H, that is for any Uy € H,

Jim, [0, ], = 0.

Proof. We use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [II, [3, 8]. Following
this theory, since the resolvent of A is compact, it suffices to establish that 4 has no eigenvalue on
the imaginary axis. For our purpose, it is easy to prove that the resolvent of the operator A defined
in is compact. We are ready now to achieve the proof of theorem with the following
lemma.

Lemma 3.2.
There is no eigenvalue of A on the imaginary axis, that is

iR C p(A).

Proof. By contradiction argument, we assume that there exists at least one i\ € o(A), A\ € R, A #£ 0
on the imaginary axis. Let U = (u,v,1,2)" € D(A) be the corresponding normalized eigenvector,
that is verifying ||U|| = 1 and

Au,v,m,2)"T =iX(u,v,n,2)7, (3.1)

which is equivalent to
v—idu=0 1in (0,1)

Ugy —2A0 =0 in (0,1)

. 3.2
o(L,.) = By — Box(1,) Xy = 0 2
— 7712, —ixz2=0 in(0,1).

Recalling the dissipativity of A and setting
Ba (Tt Ba (Tt
A =5 ——=— Ay =——= .
1=7051 5 5 A2 5 T3 (3.3)
in the proof of theorem it follows that
0 ="%e <A(U,U7T],Z)T,(U,’U,’I],Z)T>H < 7A1 |77|2 7A2|Z(1)|2 <0 ; (34)
that is
z(1,.)=0
{ (1) (3.5)
n=0.
Owing to the definition of z in §2 we deduce that n = z = 0.
Now (3.2)) becomes
v—idu=0 1in (0,1)
Upe —iA0 =0 in (0,1) (3.6)

v(1,.) = 0.
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From the first equation of (3.6 we deduce that
u(l) =0
Setting v = ¢Au, it remains to find v € V' which verifies

Upr + N2u =0 in (0,1)
ugy(1) =0 (3.7)
u(1l) =0.

By Cauchy-Kowalevsky’s theorem, there exists a nonempty neighbourhood O of 1 such that v =0
in ©N(0,1). Then the unicity theorem of Holmgren (see [4]) allows to conclude that

u=0, on(0,1). (3.8)

We deduce that (u,v,7,2)" = (0,0,0,0)" which contradicts the fact that ||| = 1. We conclude
that A4 has no eigenvalue on the imaginary axis. O

As the conditions of the spectral decomposition theory of Sz-Nagy-Foias and Foguel are fully
satisfied, the proof of theorem [3.1]is thus completed. O

4 Non uniform stability

In this section, we show that the semigroup generated by the operator A is not uniformly stable.
For that we use the frequency domain approach (see Huang [5] and Priiss [7]), namely the below
result.

Lemma 4.1.
A Cy-semigroup (etA)t>o of contractions on a Hilbert space H generated by an operator A is expo-
nentially stable, i.e., satisfies

"4 Uol|,, < Ce " |Usllay ¥V Uo € H, ¥Vt =0, (4.1)

for some positive constants C' and w, if and only if

p(A) > {i, B €R} =R (4.2)
and
. —1
sup 657~ 4) HL(H) < co. (4.3)

p(A) denotes the resolvent set of the operator A.
We state on the following result that constitutes the main of this section.

Theorem 4.2.
The system is not exponentially stable in the energy space H.
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Proof. Following the lemma above, we prove that the condition ([4.3]) is not satisfied in the sense
that, there exists some sequences (\,), (Uy) and (F},) such that

(iXn — AU, = F; (4.4)
[Fnlls = O(1); (4.5)

and
tim_[Unlly = +oo. (4.6)

Let us set U,, = (u™,v"™,n", 2")T and F, = (fin, fon, f3n, fan)". The relation (4.4)) is equivalent to

IApu” — " = fln
A" —ul, = fon
A" — (0" (1) = Bin™ — B2z" (1)) = fan

iAp 2™ + T_lzg = fan-

(4.7)

We look for a particular solution, defined for fi, = f3, = fin = 0, and f5, will be chosen later.
Then becomes

iIApu™ —v" =0

A" —ul, = fon

A" — (V" (1) = fin™ — B22™(1)) =0

A 2" + T_lzg =0.

(4.8)

The fourth equation of (4.8) combining with the condition z(0) = 7 gives 2™ (p) = ne~* "7 that is
2"(1) = e AT (4.9)

Eliminating v™ in the first and the second equation of (4.8)), and using the fact that (u™, v™, 7", 2")T €
D (A), it follows that

ugac + )\%un = _f2n
u™(0) =0 (4.10)
uy (1) = —n.

The homogeneous equation associated to (4.10)) can be solved as
up(x) = ky cos(A\pz) + ko sin(A,x), ki, ke € R.

Notice that uf(z) = cos(Apz) et uf(z) = sin(A,x) are both the solutions of the homogeneous
equation associated to (4.10). Let us denote by W (ul, u%) the “Wronskien” of the family (uf, u%).
We have

cos(Apx) sin(\,z)
W (uf, uz) = =y # 0.
—Apsin(A,z) Ay, cos(Apx)

As W (ul,uy) # 0, the family (u,u%) forms a fundamental system of solutions. Consequently we
can search the particular solution of (4.10) in the form

uy (z) = k1(z) cos(Apz) + ka(z) sin(A,x) (4.11)
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where k; and ko are functions which verify
kf cos(Apzx) + kb sin(A,z) =0
—ki A sin( A, z) + kb, cos(Apx) = — fon.

The equation (4.12)) can be solved as

= )\i/ fon(s)sin(A,s)ds and  ko(x :f—/ fon(s) cos(Ans)ds
n Jo

Combining (4.13)) and -, we get
x) = ,)\i / fon(8)sin (A (x — s)) ds.
n Jo

Now the general solution of (4.10) can be written as

u" () = k1 cos(Apx) + ko sin(Apx) — /\i /0 fon(s)sin (An(x —s))ds, ki,ks € R.

On the one hand we have
Un(O) =0 = k; =0.

On the other hand we compute

u"(1) = ky sin( / fon(s) sin (A, (1 — s)) ds;

from which follows

1

ko =4 (1
2 =’ )sin)\n + Ap Sin A,

1

/ Fon(s) sin (An(1 — 5)) ds.
0

Consequently the general solution of (4.10) can be rewritten as

sin(Apx) = sin(A,x

(4.12)

(4.13)

(4.14)

(4.15)

u(z) = u™(1) . +)\ S /f2n )sin (A, (1 = s)) ds—f/ fan(s)sin (A, (z — 8)) ds.

Differentiating the above relation it follows that

cos(Apx)

() = A (1) 55

that is

(4.16)

C(;?n)\ / fon(s) sin (A, (1 — s))ds —/ fon(s) cos (Ap(z — s)) ds

ul (1) = Apu™(1) cot Ay, + cot )\n/o fan(s)sin (A, (1 —s))ds — /0 fan(s)cos (An (1 —s))ds. (4.17)
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Now using (4.17)) and the boundary condition u,(1) = —n we get

ta:

™ tan Ay, 1 . nA, !
R [ ) s (0= ) et B[ g s con (1 ) s, (4.1

u' (1) =~

From the first and the third equations of (4.8]) we compute
(iXn + BL+ Boe” 7)™ = idu™(1)

1
= —in"tan ), — z/ fon(s)sin (A, (1 —s))ds
0
1
+itan A, / fan(s)cos (An (1 —s))ds
0
that is
' 1
(z’)\n + B1 + Bae T 4 itan )\n) n" = —i/ fon(s)sin (A, (1 —s))ds
’ 1
+itan A, / fon(s) cos (A (1 — s)) ds.
0

Let us set
I =i\, + f1 + Boe” 7 +itan \,,.

1
Before computing 7", let us demonstrate that IT # 0 with the choice A\, = 2n7 + —.

vn
We have

Pa
cos (A7) + isin (A, 7)
b + itan (1>
cos (A7) + isin (A7) Vn
1

= iy + 81 + B2 (cos (A7) —isin (A, 7)) + ¢ tan (ﬁ)

= [+ Pacos (A7) 414 ()\n — sin (A, 7) + tan (%)) .

II = i\, +061+ +itan A\,

So we can deduce that

B1+ Bacos (ApT) =0
=0 An — sin (A, 7) + tan (\/171) =0.
Br+ Brcos(Ant) =0 = cos (A7) = _%
2

= cos(A,7) < —las B > P
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The last relation is impossible, so we have II # 0.
We deduce that

_ﬁ/o Fon(s) sin (1 — s)) ds

. 1
itan / Fan(8) cos (1 — 5)) ds. (4.19)
0
Inserting (4.19)) in (4.18) it follows that
t 2>\
wt) = L g st ) ds S [ 6 cos (1 - ) s
an/\n

_Yn/o fan(s)sin (A, (1 — s)) ds + /o fon(8) cos (Mn(1 — 8)) ds

in other words

— AT
u(1) = _ +ﬁ1 +52€ / fan(8)sin (A, (1 — s))ds
/\n — AT /\

A ”31 +52; ) tan / Fan(8) cos (1 — ) ds. (4.20)

If we take \,, large enough in we get

Co [* :

~ . fon(s) sin (A, (1 — s)) ds. (4.21)

n Jo

Now let us compute \,u™(z), using (4.21). We get

in(\, sin(
Au(z) = )\nu"(l)&:i](ﬂ)\x sm)\ / Jan(s)sin (A, (1 — s)) ds—/ fan(s)sin (A, (z — s)) ds
_ bln)\x f (1 — ) ds sln/\x/f in (1 — 5)) ds
o sin A\, 2n(s) sin ( s sin A 2n(s) 5

—/ fon(s)sin (A, (x — s))ds
0

si

= (1-0Cy) ;nA /an sin (A, (1 — s)) ds—/ fon(8)sin (A (x — s)) ds.

Consequently we have

At (2) = (1 — Cg)SBnT) gy py (4.22)
sin A, ——
where we set ”
x) = /0 fan(s)sin (A, (z — s)) ds. (4.23)
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Let us choose fon(2) := sin(A\nz). Then computing P(z), we obtain
P(z) = /O " sin(Ans) sin (n(z — 5)) ds
= /0 " gin(Ans) (sin (M) cos(Ans) — cos(Anz) sin(Ans)) ds
= sin(\,z) /O ' sin(\,s) cos(A\,s)ds — cos(A\,z) /O ’ sin?(\,8)ds

_osin(Apz) [7 sinZ2(\ s)) S_M ’ — cos s))ds
0 [ o) [

2, 2
_ sin®(A\pz)  wcos(Auz)  cos(A,z)sin(2\,2)
T2, 2 4\,
_osin®(\z)  meos(A,z)  cos?(A,z) sin(A,z)
- 20 2 2\,
_sin(Apz)  wcos(A,x)

22, 2

1

Recalling the choice of \,, we have that sin()\,,) cos(A,) = 1 and A, =~ 2nw. So we get

~ %,
11
o2mn3/2 2

P(l) =

DN | =

Then it follow that

! ! 2% cos? (A c
/ |H(z)]?dz > / %(nx)dm - )\—21 (where C is a generic positive constant)
0 0 n
1 ¢
> — -2
- 48 A\,
In other words
! 2 1 Gy
; |H(z)|” dz > Y (4.24)
Furthermore we have
1 1 : 2
sin(A,z)
K(x)[?de = 1— Co)——+—=P(1)| d
| i@ = [ la-c) =it ew) i

C b . . s
% / sin?(A,z)dz  (where C is a generic positive constant)
sin“ A\, Jo

v

. 1
Con {x 3 bln(?z\nx)]

2 A,

that is )
/ |K (2)]* dz > Csn + C4 (4.25)
0
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with C3 (positive) and Cy are generic constants.
Following (4.22) we have that

1 1
/0 P (@) de = / K(2) + H(z)|

1 1 1
_ / K (2)[2 dz + / H(2)[2 dz + 2/ K(2)H(z)dx (4.26)
0 0 0
A straightforward calculation using the identity 2a3 > —a? — 32 gives for all € > 0:
1
KH = |—=K H
() tvem
K2

Inserting (4.27)) in (4.26)) it follows that
1 1 1
2
/ A (z)]* > (1 - 6)/ |K ()] da + (1 —25)/ \H (z)| d. (4.28)
0 0 0

Now combining (4.28)), (4.25) and (4.24) we obtain

/01|>\nu”(x)|2 > Cs (li)”+c4 (15) ti-e <1l2+>i)

Consequently there exists a positive constant v;, and another constant s such that

1
/ At (2)]? dz > vin + 7. (4.29)
0

We deduce from (4.29) that

1
2 n n 2
1UalZ > 10" 2200y = / Pts™(@) 2 dz > 3+ 2 (4.30)

which implies

On the other hand, according the choice of F;,, we have
1
2
1Bl = [ 1onla) e
0
1

sin?(\,z)dx

I
S~

1 sin(2\,,)
2 4N,
which implies

[Enlly = O(1).

Finally we have found some sequences (Ay,), (U,) and (F,,) which verify (4.4)-(4.6). Consequently
system (|1.1)) is not uniformly stable. O
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5 Rational stabilization result

Here we prove the problem (1.1)) has a rational decays rate in the form ¢t~!. For that purpose we
recall the following result due to Borichev and Tomilov [2]:

Lemma 5.1.
Let A be the generator of a Cy-semigroup of bounded operators on a Hilbert space X such that
iR C p(A). Then we have the polynomial decay

C
HetAUOH < 78 Uoll, t >0,

if and only if

lim sup (i)\fA)_lH < 0.

1
[A|=+o0 ‘)"9
The main result of this section is the next theorem.

Theorem 5.2.
The semigroup of system (1.1) decays polynomially as

[|e™Us]| < % IUoll, ¥ Uy € D(A), ¥V t > 0. (5.1)

Proof. Tt suffices to show following the results in [6, 0] and the above theorem, that for any
U= (u,v,n, z)T € D(A) and F = (f,g,h, k)T € H, the solution of

G — AU =F (5.2)

verifies

[Ull3¢ < CAILF I3 (5:3)

where A > 0 and C' a positive constant.

Problem (1.1}) without delay is the following one
Ut (2, ) — Uge (2, ) = 0 in 10, 1[Xx (0, +00)

u(0,t) =0Vt € (0,400)
uz(1,8) +n(t) =0V t € (0, +00)

nt(t) - ut(lat) + ﬂ’?(t) Vite (O’ +OO)

’LL(-,O) = Uo, ut('ao) = U1 in}oal[v 77(0) =To eR

which is well-posed in
Ho =V x L*(0,1) xR (5.4)

endowed with the norm

2
.
|omT|| = lualZa + 01220 + 0 (5.5)
0
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The generator of its semigroup is Ag defined by
T T
Ao (u,v,m)" = (v, Ugs, v(1) — B17) (5.6)
with domain

D(Ap) = {(u,v,n)T € (H20,1)NV) x V xR :ug(1) + 9= 0} . (5.7)

Thanks to [10], the operator A, generates a polynomial stable semigroup with optimal decay rate
t=1. Therefore the solution (u*,v*,n*)" of

u u
(A —Ag) | v | =|wv (5.8)
n* n

verifies

.
H(u*,v*,n*) ‘H

< C)\H(u,v,n)-r‘

0

where C' is a positive constant.

On the other hand the system (5.8]) can be rewritten as

I —v* =
i —ul, =0 (5.10)
iAn* —o*(1) + Bin* = n.
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With the help of integrations by parts and using (5.10) we have

u u* AU — v u*
v v* IV —u v*
ix[ — A . = , . N -
<( ) n n > < iAn — (1) + Bin + Baz(1) n >
z 0 ” iNe+T771z, 0 ”

1 1
/ (A — ), uidr + / (1AV — Ugy) v¥dx
0 0
+ (iAn — v(1) + Bin + B2z(1)) n*
1 1 1 1
= i)\/ ugutde — / vputdr + i)\/ vo*dr — / Upp 0 AT
0 0 0 0
+ (iAn —v(1) + Bin + B22(1)) n*

1 1
= i)\/ ugutdr — v(1)uk(1) + v(0)uk(0) + / vuk, dx
0 0

1 1

i | wode — up (1) (1) + s (0)0 (0 Jord
+i /Ovv x u()v()—l—u()v()—l—/ouv x
+ (iAn — v(1) + Bin + B2z(1)) n*

1 1 1
= i)\/ uzutde + v(l)ﬁ—i—/ vul dr + i)\/ vv*dx
0 0 0

1

+nu*(1) + / ugvide + (idn —v(1) + Bin + B22(1)) n*

= / Uy (—iAu* 4 v*) dx +/ v(—iAv* + ulk, )dx
0 0
+n(=idn* +v*(1) — B1n*) + (2611 + B22(1)) n*
1 1
= [l [ o do o + @8+ paz() T
0 0

2 oy
= —lualliz1) = I0lZ20.0) = Inl” + (2810 + B22(1))

Recalling (5.2]) and using (5.5) we deduce from the above relation that

u*
2 vt _
|@omT| =% <F, . > + R (2810 + Ba2(1) ) (5.11)
0]
0 H
Applying Cauchy-Schwarz’s and Young’s inequalities, we get
T 2 x ok x\ T 46% 2 B% 2 %12
Jewom| < NF I 0" )Ty, + =2 ol + 2 (2 (O + el
As By < By it follows that
T 2 * * * 4/82 ﬁQ *
o e 1 e P S G A U R CR L
0
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that is
2 * * * T 45% 2 ﬁ% 2 * * * T 2 2
101 < et o)+ =20 2 2 F et on )| ¢l 00 - (5:33)

Furthermore, following §2 (see the proof of theorem we have

R <(m —A) > = — (AU, U)yy > Ay In* + Az |2(1)*;

ISR IS
ISEIS IS S

H

where A; and Ay are positive constants defined in (3.3). Consequently using the Cauchy-Schwarz
inequality and the notation (5.2)) it follows that

2 2
Avfnl™ + Mg [z(D < [1F [l 1Tl

that is
nl” + |2(1)* < (min{Ar, Ao }) " | F )l U5, - (5.14)

Now combining ([5.13)), (5.14]) and (5.9)) we get
C 2
101, < CF I (o) ||+ Z 1l [Tl + CoXe |||+l (5:15)
0 0

where C', Cy and C3 are independent of A and &.
Furthermore we have
||, <10, (5.16)
Ho

Using (5.15), (5.16)), and taking e small enough (such that for example C3A\%e = o(1)), it follows
UIZ, < CAFly (Ul + 2P|, U ] 5.17
U5 = CE 1Tl + — 1E 3 U, + Cllz N 0, (5.17)

Now we need a best estimation for ¢ ||z||2L2(0 -

Following ([3.2) and solving the next Cauchy problem (5.18)

Tl iz =k
{ ) (5.18)
we obtain )
2(p) = z(1)e" A7~ 7'/ e~ A= () do, Y pe(0,1). (5.19)
p

Using the triangular inequality, it follows from (5.19)) that
1
20 <1+ [ IK@ldo, ¥ pe (0.1),
P
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that is

(P2 < o) + 72 (/ k()] da>2 2l (/ Kldo), ¥pe1).  (620)

On the one hand, by Cauchy-Schwarz’s inequality we obtain

(/pl|k(0)|da>2 < (/pl|k(o)|2do> (/pldo>

(1-p) / k(o) do

/p k(o) do

(/pl |k(a)do>2 < /p1 ()2 dor (5.21)

On the other hand Young’s inequality guarantees that

IN

IN

that is

2

2|2(1)| 7 (/pl |k(o)d0) < (V) + 72 (/pl |k:(a)|da) . (5.22)

Combining (5.20)), (5.21)) and (5.22) it follows that

1
2" < 2[=(1) + 272/ |k(0)|* do. (5.23)
P
Integrating (5.23)) on (0,1) and making easy computations we get
2 2 2
Ul 00y < 2€ 2V + 2672 K, o) -

By (5.14) we arrive at
Clzl7, 0,0 < 2¢ (min{Ay, Ao }) ™ I Fllyy Ul + 2¢7° |1 FIl5, (5.24)

Finally, combining (5.24)) and (5.17) it follows that
2 2
Ul < € o) | Ella Uy, + 272 5, (5.25)
C _
where C'(\, &) = C1 A + ?2 +2¢ (min{Ay, A5}) " with C; and Cy independent of A and e.

Taking A sufficiently large we get HU||§_L <C (/\ | F Nl 1U |5, + ||F||3_[), from where follows that
lU|l;; £ CX||F||4- Therefore recalling (5.2), we conclude that

limsup — || (4 — A)_1H < 00. So from Theorem the semigroup decays polynomially with the
A——+oo
rate t71. O
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6 Conclusion

In this paper, we shown for 1D wave equation with delay term on the dynamical control, that the
energy decays polynomially with the rate 1. To do this, we first prove the well posedness, the
strong stability and the non uniform stability using the frequency domain approach.

For our future works, we intend to replace the delay (7 constant) by time-varying delay (i.e 7(t)).
We will also show that the energy of the system decays with the same rate ¢t~! assuming 3 > B.

Acknowledgement(s) : The authors would like to thank the referees for their careful reading of
this article. Their valuable suggestions and critical remarks made numerous improvements through-
out this article and which can help for future works.
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