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1 Introduction

In this work, we study the existence and regularity of solutions for the following partial func-
tional equation 

u′′(t) = Au(t) + f(t, ut, u
′
t) for t ≥ 0

u0 = ϕ ∈ Cα

u′0 = ϕ′ ∈ Cα,

(1.1)

where A is the (possibly unbounded) infinitesimal generator of a strongly continuous cosine family
of linear operators in X, Cα = C1([−r, 0], D((−A)α)), 0 < α ≤ 1, denotes the space of conti-
nuous functions from [−r, 0] into D((−A)α), (−A)α is the fractional α-power of A. This operator
((−A)α, D((−A)α)) will be describe later. Cαis endowed with the following norm ‖h‖Cα = |h|α+|h′|α
for all h ∈ C = C1([−r, 0], X), the norm | . |α will be specified later. For every t ≥ 0, ut denotes the
history function of C defined by
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ut(θ) = u(t+ θ) for − r ≤ θ ≤ 0,

f : R+ × Cα × Cα → X is a given function.
In [11] the authors study some semi-linear second order initial value problem. They also unify and
simplify some ideas from the theory of strongly continuous cosine families of linear operators in
Banach spaces. In [2], by using the theory of strongly continuous cosine families of linear operators
in Banach, the author investigated the existence of solutions of the following semilinear second
order differential initial value problem u′′(t) = Au(t) + g(u(t), u′(t)) for t ∈ [0, T ]

u(0) = u0 ∈ X u′(0) = u1 ∈ X.
(1.2)

Using the theory of strongly continuous cosine families of linear operators in Banach space, we
prove in this paper the existence of the mild and strict solutions. In [12], the author present a
construction of cosine family with weak singularity in order to show its application to evolution
Cauchy problems of the following form u′′(t) = B2u(t) + g(t) for t ∈ R

u(0) = u0 ∈ X u′(0) = u1 ∈ X,

where X is a Banach space and B : X → X is a closed densely defined linear operator such that B
and −B generate analytic semigroups with weak singularity at 0.

The most fundamental work on cosine families can be found in [3, 4]. Important additions have also
brought by Sova M. [8, 9] and Nagy B. [5, 6].

Our contribution in this topic is made in two steps. First, in [13], we generalize some results
obtained in [11] by introducing a distributed delay on [−r, 0], r > 0. We also prove the existence
and regularity of solutions of equation 1.1 in C = C1([−r, 0], X). Secondly, the present work gene-
ralize the results obtained in [13] by using the fractional α-power of A. Consequently, we obtain
results which are more general than the ones obtained in [13]. Since the delay is distributed on
[−r, 0], r > 0, this work generalize some results obtained in [10].

The organization of this work is as follows, in section 2, we collect some background materials
required throughout the paper. In section 3, we study the existence of local mild solutions of equa-
tion (1.1) and we show the global continuation of solutions. We prove that in the case of local
existence, the solutions blows up, we also show the continuous dependence with the initial data.
In section 4, we will show the existence of strict solutions for equation (1.1). For illustration, we
propose to study the existence of solutions for some partial functional equations with diffusion.

2 Preliminaries
Let (X, ‖.‖) be a Banach space and α be a constant such that 0 < α < 1 and A be the

infinitesimal generator of a strongly continuous cosine family of linear operators (C(t))t∈R on X.
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We assume without loss of generality that 0 ∈ ρ(−A). Note that if the assumption 0 ∈ ρ(−A) is
not satisfied, one can substitute the operator −A by the operator (−A − σ) with σ large enough
such that 0 ∈ ρ(−A − σ). This allows us to define the fractional power (−A)α for 0 < α < 1, as a
closed linear invertible operator with domain D((−A)α) dense in X. The closeness of (−A)α implies
that D((−A)α), endowed with the graph norm of (−A)α, |x| = ‖x‖+‖(−A)αx‖, is a Banach space.
Since (−A)α is invertible, its graph norm |.| is equivalent to the norm |x|α = ‖(−A)αx‖. Thus,
D((−A)α) equipped with the norm |.|α, is a Banach space, which we denote by Xα.

Definition 2.1. A one parameter family (C(t))t∈R of bounded linear operators mapping the Banach
space X into itself is called a strongly continuous cosine family if and only if
i) C(s+ t) + C(s− t) = 2C(s)C(t) for all s, t ∈ R,
ii) C(0) = I,
iii) C(t)x is continuous in t on R for each fixed x ∈ X.

If (C(t))t∈R is a strongly continuous cosine family in X, then S(t) defined by

S(t)x =

∫ t

0

C(s)xds for x ∈ X, t ∈ R. (2.1)

is a one parameter family of operators in X.

Definition 2.2. The infinitesimal generator of a strongly continuous cosine family (C(t))t∈R is the
operator A : X → X defined by

Ax =
d2C(t)x

dt2
|t=0.

D(A) = {x ∈ X : C(t)x is a twice continuously differentiable function of t}.

We shall also make use of the set

E = {x : C(t)x is a once continuously differentiable function of t}.

Proposition 2.3. [11] Let (C(t))t∈R be a strongly continuous cosine family in X with infinitesimal
generator A. The following are true.
a) D(A) is dense in X and A is a closed operator in X

b) if x ∈ X and r, s ∈ R, then z =

∫ s

r

S(u)xdu ∈ D(A) and Az = C(s)x− C(r)x,

c) If x ∈ X and r, s ∈ R, then z =

∫ s

0

∫ r

0

C(u)C(v)xdudv ∈ D(A) and

Az =
1

2
(C(r + s)x− C(s− r)x)

d) if x ∈ X, then S(t)x ∈ E,

e) if x ∈ X, then S(t)x ∈ D(A) and
dC(t)x

dt
= AS(t)x,

f) if x ∈ D(A), then C(t)x ∈ D(A) and
d2C(t)x

dt2
= AC(t)x = C(t)Ax,

g) if x ∈ E, then lim
t→0

AS(t)x = 0,

h) if x ∈ E, then S(t)x ∈ D(A) and
d2S(t)x

dt2
= AS(t)x,

i) if x ∈ D(A), then S(t)x ∈ D(A) and AS(t)x = S(t)Ax,
j) C(t+ s)− C(t− s) = 2AS(t)S(s) for all s, t ∈ R.
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In [3], for 0 ≤ α ≤ 1, the fractional powers (−A)α exist as closed linear operators in X,

D((−A)β) ⊂ D((−A)α) for 0 ≤ α ≤ β ≤ 1, and (−A)α(−A)β = (−A)α+β . (2.2)

Throughout this paper, we assume that

(H0) A is the infinitesimal generator of a strongly continuous cosine family of linear operators
on a Banach space X.

By Proposition 2.3, (H0) implies that the operator A is densely defined in X, i.e. D(A) = X.
We have the following result.

Proposition 2.4. [11] Assume that (H0) holds. Then there are constants M ≥ 1 and ω ≥ 0 such
that

‖C(t)‖ ≤Me−ω|t| and ‖S(t)− S(t′)‖ ≤M
∣∣∣ ∫ t

t′
e−ω|s|ds

∣∣∣ and for t, t′ ∈ R.

From previous inequality, since S(0) = 0 we can deduce

‖S(t)‖ ≤ M

ω
e−ωt for t ∈ R+.

In the sequel, let us pose M1 = max
(
M,

M

ω

)
.

Theorem 2.5. [2] If g : [0, T ]×X ×X → X is continuous and u is a solution of equation (1.2),
then u is a solution of the integral equation

u(t) = C(t)u0 + S(t)u1 +

∫ t

0

S(t− s)g(s, u(s), u′(s))ds for t ≥ 0,

(A1) For 0 < α ≤ 1 (−A)α maps onto X and is 1-1, so that D((−A)α) endowed with the norm the
norm |x|α = ‖(−A)αx‖ is a Banach space. We denote by Xα this Banach space. We further assume
that (−A)−1 is compact. We require the following lemmas.

Lemma 2.6. [10] Assume (H0) holds. Then the following are true.
(i) For 0 < α < 1, A−α is compact if only if (−A)−1 is compact.
(ii) For 0 < α < 1 and t ∈ R, (−A)αC(t) = C(t)(−A)α and (−A)αS(t) = S(t)(−A)α.

Recall from [3], (−A)−α is given by the following formula

(−A)−α =
sinπα

π

∫ +∞

0

tα−1(tI −A)−1dt.
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Lemma 2.7. [10] Assume that (H0) holds, let v : R→ X such that v is continuously differentiable

and let q(t) =

∫ t

0

S(t− s)v(s)ds. Then

(i) q is twice continuously differentiable and for t ∈ R,

q(t) ∈ D(A), q′(t) =

∫ t

0

C(t− s)v(s)ds

and

q′′(t) =

∫ t

0

C ′(t− s)v(s)ds+ C(0)v(t) = Aq(t) + v(t).

(ii) For 0 ≤ α ≤ 1 and t ∈ R, (−A)α−1q′(t) ∈ E.

Theorem 2.8. (Heine’s Theorem). Let f be a continuous function on a compact set K, then f is
uniformly continuous on K.

Theorem 2.9. (Schauder’s fixed point Theorem). Let X be a locally convex topological vector space,
and let K ⊂ X be a non-empty, compact, and convex set. Then given any continuous mapping
f : K → K there exists x ∈ K such that f(x) = x.

Theorem 2.10. (Arzelà-Ascoli Theorem). Let (X, dX) and (Y, dY ) be compact metric spaces,
C(X,Y ) be the set of continuous functions from X to Y and let F be a subset of C(X,Y ). If
F is closed and equicontinuous then it is compact.

3 Local existence, global continuation and blowing up of so-
lutions

Proposition 3.1. Assume that (H0) holds. If u is a solution of equation (1.1), then

u(t) = C(t)ϕ(0) + S(t)ϕ′(0) +

∫ t

0

S(t− s)f(s, us, u
′
s)ds for t ≥ 0, (3.1)

Proof. It is just a consequence of Theorem 2.5. In fact, let us pose g(t, u(t), u′(t)) = f(t, ut, u
′
t) for

t ≥ 0. Then we get the desired result. �

Remark : The converse is not true. In fact if u satisfies equation (3.1), u may be not twice
continuously differentiable, that is why we distinguish between mild and strict solutions.

Definition 3.2. We say that a continuous function u : [−r,+∞[→ Xα is a strict solution of
equation (1.1) if the following conditions hold
(i) u ∈ C1([0,+∞[;Xα) ∩ C2((0,+∞[;Xα).
(ii) u satisfies equation (1.1) on [0,+∞[.
(iii) u(θ) = ϕ(θ) for −r ≤ θ ≤ 0.
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Definition 3.3. We say that a continuous function u : [−r,+∞[→ Xα is a mild solution of equation
(1.1) if u satisfies the following equation

u(t) = C(t)ϕ(0) + S(t)ϕ′(0) +

∫ t

0

S(t− s)f(s, us, u
′
s)ds for t ≥ 0

u0 = ϕ ∈ Cα.

u′0 = ϕ′ ∈ Cα.

In the following, we give a local existence of mild solutions of equation (1.1). First of all, we
study the existence of mild solutions, in order to do that, we assume the following assumptions.

(H1) The function f : [0, b]× Cα × Cα → X satisfies the following conditions
i) f : [0, b]× Cα × Cα → X is continuously differentiable.
ii) There exists a continuous nondecreasing function β : [0, b]→ R+ such that

‖f(t, ϕ, ϕ′)‖ ≤ β(t)|ϕ|α for (t, ϕ) ∈ [0, b]× Cα.

(H2) A−1 is compact on X.

Theorem 3.4. Assume that (H0), (H1) and (H2) hold. Let ϕ ∈ Cα such that ϕ(0) ∈ D(A) and
ϕ′(0) ∈ E and assume that

‖(−A)α−1‖ sup
t∈[0,b]

[
β(t)(2Me−ωb + 1) +Me−ωb

]
< 1.

Then equation (1.1) has at least one mild solution on [0, b].

Proof. Let k > |ϕ|Cα , we define define the following set

Zk = {x ∈ C([0, b], Xα) : x(0) = ϕ(0) and |x|∞ ≤ k},

where |x|∞ = sup
t∈[0,b]

|x(t)|α. For x ∈ Zk, define the x̃(t) : [0, b]→ Xα by

x̃(t) =

 x(t) for t ∈ [0, b]

ϕ(t) for t ∈ [−r, 0]

The function t→ x̃t is continuous from [0, b] to Cα. Now, define the operator H on Zk by

H(x)(t) = C(t)ϕ(0) + S(t)ϕ′(0) +

∫ t

0

S(t− s)f(s, xs, x
′
s)ds for t ∈ [0, b].

It is sufficient to show that H has a fixed point in Zk. We give the proof in several steps.

Step 1 : There is a positive k > |ϕ|Cα such that H(Zk) ⊂ Zk.
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If not, then for each k > ‖ϕ‖Cα , there exist xk ∈ Zk and tk ∈ [0, b] such that |(Hxk)(tk)|α > k.
Then by Proposition 2.3, we have

k < |(Hxk)(tk)|α ≤ |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α +
∣∣∣ ∫ tk

0
S(tk − s)f(s, x̃s, x̃′s)ds

∣∣∣
α

< |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α +
∥∥∥− (−A)α−1

∫ tk

0
AS(tk − s)f(s, x̃s, x̃′s)ds

∥∥∥
< |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α +

∥∥∥(−A)α−1
[ ∫ tk

0

d

ds

(
C(tk − s)f(s, x̃s, x̃′s)

)
ds−

∫ tk

0
C(tk − s)

d

ds

(
f(s, x̃s, x̃′s)

)
ds
]∥∥∥

< |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α +
∥∥∥(−A)α−1

(
f(tk, x̃tk , x̃

′
tk )− C(tk)f(0, x̃0, x̃′0)

)∥∥∥
+‖(−A)α−1‖Me−ωb‖f(tk, x̃tk , x̃′tk )− f(0, x̃0, x̃′0)‖

< |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α + ‖(−A)α−1‖
(
‖f(tk, x̃tk , x̃′tk )‖+ ‖C(tk)f(0, x̃0, x̃′0)‖+Me−ωb‖f(tk, x̃tk , x̃′tk )− f(0, x̃0, x̃′0)‖

)
< |C(tk)ϕ(0)|α + |S(tk)ϕ′(0)|α + ‖(−A)α−1‖

(
[β(tk) +Me−ωb]|x̃t|Cα + 2Me−ωbβ(0)|x̃t|Cα

)
.

Since |x̃s|Cα ≤ k for all s ∈ [0, b] and x ∈ Zk, then we obtain

k < M1e
−ωb
(
|ϕ(0)|α + |ϕ′(0)|α

)
+ ‖(−A)α−1‖ sup

t∈[0,b]

[
β(t)(2Me−ωb + 1) +Me−ωb

]
k.

Consequently

1 <
M1e

−ωb
(
|ϕ(0)|α + |ϕ′(0)|α

)
k

+ ‖(−A)α−1‖ sup
t∈[0,b]

[
β(t)(2Me−ωb + 1) +Me−ωb

]
.

It follows that when k → +∞ that

1 ≤ ‖(−A)α−1‖ sup
t∈[0,b]

[
β(t)(2Me−ωb + 1) +Me−ωb

]
,

which gives a contradiction.

Step 2 : H is continuous

Let (xn)n ∈ Zk with xn → x in Zk. Then, the set

∆ = {(s, x̃ns , x̃′
n

s ), (s, x̃s, x̃′s) : s ∈ [0, b], n ≥ 1}
is compact in [0, b]× Cα × Cα. By Heine’s theorem implies that f is uniformly continuous in ∆ and

|H(xn)(t)−H(x)(t)|∞ ≤ sup
t∈[0,b]

∥∥∥− (−A)α−1

∫ t

0
AS(t− s)(f(s, xns , x′

n
s )− f(s, xs, x′s))ds

∥∥∥
≤ sup

t∈[0,b]

∥∥∥(−A)α−1
[ ∫ t

0

d

ds

(
C(t− s)(f(s, xns , x′

n
s )− f(s, xs, x′s)

)
ds

−
∫ t

0
C(tk − s)

d

ds

(
(f(s, xns , x

′n
s )− f(s, xs, x′s)

)
ds
]∥∥∥

≤ ‖(−A)α−1‖
(
(1 +M1e

−ωb)‖f(t, xnt , x′
n
t )− f(t, xt, x′t)‖+ 2M1e

−ωb‖f(0, xn0 , x′
n
0 )− f(0, x0, x′0)‖

)
→ 0 as n→ +∞,
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and this yield the continuity of H on Zk.

Step 3 : The set {H(x)(t) : x ∈ Zk} is relatively compact for each t ∈ [0, b].

Let t ∈]0, b] be fixed, using the same reasoning like in the Step 1, we have

‖(−A)αH(x))(t)‖ ≤ ‖(−A)α−1‖
[
M1e

−ωb
(
‖Aϕ(0)‖+ ‖Aϕ′(0)‖

)
+ sup
t∈[0,b]

(
β(t)(2Me−ωb + 1) +Me−ωb

)
k
]
.

Then for t ∈ [0, b] fixed the set {(−A)αH(x)(t) : x ∈ Zk} is bounded in X. By (H2), we deduce
that (−A)−α : X → Xα is compact. It follows that the set {H(x)(t) : x ∈ Zk} is relatively compact
for each t ∈ [0, b] in Xα.

Step 4 : The set {H(x) : x ∈ Zk} is an equicontinuous family of functions.

Let x ∈ Zk and 0 ≤ τ1 < τ2 ≤ b, then we have

|H(x)(τ2)−H(x)(τ1)|α ≤ |[C(τ2)− C(τ1)]ϕ(0)|α + |[S(τ2)− S(τ1)]ϕ′(0)|α

+
∣∣∣ ∫ τ2

0
S(τ2 − s)f(s, x̃s, x̃′s))ds−

∫ τ1

0
S(τ1 − s)f(s, x̃s, x̃′s))ds

∣∣∣
α

≤ |[C(τ2)− C(τ1)]ϕ(0)|α + |[S(τ2)− S(τ1)]ϕ′(0)|α +
∣∣∣ ∫ τ1

0
[S(τ2 − s)− S(τ1 − s)]f(s, x̃s, x̃′s))ds

∣∣∣
α

+
∣∣∣ ∫ τ2

τ1

S(τ2 − s)f(s, x̃s, x̃′s))ds
∣∣∣
α

≤ |[C(τ2)− C(τ1)]ϕ(0)|α + |[S(τ2)− S(τ1)]ϕ′(0)|α +
∥∥∥(−A)α−1

[ ∫ τ2

τ1

d

ds

(
C(τ2 − s)f(s, x̃s, x̃′s)

)
ds−

∫ τ2

τ1

C(τ2 − s)
d

ds

(
f(s, x̃s, x̃′s)

)
ds
]∥∥∥+ ∥∥∥(−A)α−1

[ ∫ τ1

0

d

ds

(
[C(τ2 − s)− C(τ1 − s)]f(s, x̃s, x̃′s)

)
ds

−
∫ τ1

0
[C(τ2 − s)− C(τ1 − s)]

d

ds

(
f(s, x̃s, x̃′s)

)
ds
]∥∥∥

≤ |[C(τ2)− C(τ1)]ϕ(0)|α + |[S(τ2)− S(τ1)]ϕ′(0)|α

+‖(−A)α−1‖
(
‖f(τ2, x̃τ2 , x̃′τ2 )− C(τ2 − τ1)f(τ1, x̃τ1 , x̃′τ1 )‖

+M1e
−ωb‖f(τ2, x̃τ2 , x̃′τ2 )− f(τ1, x̃τ1 , x̃′τ1 )‖+ ‖[C(τ2 − τ1)− I]f(τ1, x̃τ1 , x̃′τ1‖

+‖[C(τ2)− C(τ1)]f(0, x̃0, x̃′0)‖+ ‖C(τ2)− C(τ1)‖ ‖f(τ1, x̃τ1 , x̃′τ1 )− f(0, x̃0, x̃′0)‖
)
−→ 0 if τ1 → τ2,

since (−A)α−1 is compact from X to X and (C(t)t∈R is uniformly continuous on compact subsets
of X. Thus, H maps Zk into an equicontinuous family of functions.
The equicontinuities for the cases τ1 < τ2 ≤ 0 and τ1 < 0 < τ2 are obvious.
So from the above step 1 to step 4 and the Ascoli-Arzela theorem, we can conclude that H : Zk →
Zk is completely continuous. Hence by the Schauder fixed point theorem, H has at least one fixed
point x in Zk which is a mild solutions of equation (1.1).�
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In the following, we prove the uniqueness of local mild solutions of equation (1.1). In what fol-
low, we require f to be autonomous, that is, f : Cα × Cα → X. We make the following assumption.

(H3) f is locally lipschitz, that is, for each δ > 0 there is a constant c0(δ) > 0 such that if
ϕ1, ϕ2 ∈ Cα ‖ϕ1‖Cα , |ϕ2‖Cα ≤ δ then

‖f(ϕ1, ϕ
′
1)− f(ϕ2, ϕ

′
2)‖ ≤ c0(δ)‖ϕ1 − ϕ2‖Cα .

(H4) The maps t→ AC(t) is locally bounded.

Theorem 3.5. Assume that (H0), (H2), (H3) and (H4) hold. Let ϕ ∈ Cα such that ϕ(0) ∈ D(A)
and ϕ′(0) ∈ E. Then, there exists a maximal interval of existence [−r, bϕ[ and a unique mild solution
u(., ϕ) of equation (1.1) defined on [−r, bϕ[ and either

bϕ = +∞ or limt→b−ϕ (|u(t, ϕ)|α + |u′(t, ϕ)|α) = +∞.

Moreover, u(t, ϕ) is a continuous function of ϕ in the sense that if ϕ ∈ Cα and t ∈ [0, bϕ[, then
there exist positive constants k and ε such that, for ϕ,ψ ∈ Cα and ‖ϕ− ψ‖Cα < ε, we have

t ∈ [0, bψ[ and |u(s, ϕ)− u(s, ψ)|α + |u′(s, ϕ)− u′(s, ψ)|α ≤ k‖ϕ− ψ‖Cα for all s ∈ [−r, t].

Proof. Let b1 > 0. The local lipschitz condition on f implies that for each α > 0, there exists c0(δ)
such that for ϕ ∈ C with ‖ϕ‖Cα < δ we have

‖f(ϕ,ϕ′)‖ ≤ c0(δ)‖ϕ‖Cα + ‖f(0, 0)‖ ≤ c0(δ)δ + ‖f(0, 0)‖,

with for given ϕ ∈ Cα, δ = ‖ϕ‖Cα + 1 and c1(δ) = c0(δ)δ + sup
s∈[0,b1]

‖f(0, 0)‖. Consider the following

set

Zϕ =


u ∈ C1([−r, b1];Xα) : u(s) = ϕ(s), u′(s) = ϕ′(s) if s ∈ [−r, 0]

and sups∈[0,b1](|u(s)− ϕ(0)|α + |u′(s)− ϕ′(0)|α) ≤ 1,


then Zϕ is a closed set of C1([−r, b1];Xα)]. Consider the mapping

K : Zϕ → C1([−r, b1];Xα)

defined by 

K(u)(t) = C(t)ϕ(0) + S(t)ϕ′(0) +

∫ t

0

S(t− s)f(us, u
′
s)ds for t ≥ 0

K(u0)(t) = ϕ(t) for t ∈ [−r, 0]

(K(u0))′(t) = ϕ′(t) for t ∈ [−r, 0].

9
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We will show that K(Zϕ) ⊂ Zϕ. Let u ∈ Zϕ, t ∈ [0, b1] and µ0 be a positive real number such that
‖AC(t)‖ ≤ µ0 for all t ∈ [0, b1]. Then we have

|K(u)(t)− ϕ(0)|α ≤ |C(t)ϕ(0)− ϕ(0)|α + |S(t)ϕ′(0)|α +
∣∣∣ ∫ t

0

S(t− s)f(us, u
′
s)ds

∣∣∣
α

≤ |C(t)ϕ(0)− ϕ(0)|α + |S(t)ϕ′(0)|α +
∥∥∥(−A)α−1

∫ t

0

(∫ t−s

0

AC(σ)f(us, u
′
s)dσ

)
ds
∥∥∥

≤ |C(t)ϕ(0)− ϕ(0)|α + |S(t)ϕ′(0)|α + ‖(−A)α−1‖µ0b1

∫ t

0

‖f(us, u
′
s)‖ds.

Since |u(s) − ϕ(0)|α + |u′(s) − ϕ′(0)|α ≤ 1 for s ∈ [0, b1] and δ = ‖ϕ‖Cα + 1, we deduce that
‖us‖Cα ≤ 1 + ‖ϕ‖Cα = δ for s ∈ [0, b1]. Then

‖f(us, u
′
s)‖ ≤ c0(δ)‖us‖Cα + ‖f(0, 0)‖ ≤ c1(δ)

(3.2)
‖f(ϕ,ϕ′)‖ ≤ c0(δ)‖ϕ‖Cα + ‖f(0, 0)‖ ≤ c1(δ).

If we choose b1 sufficiently small such that

sup
s∈[0,b1]

{
|C(s)ϕ(0)− ϕ(0)|α + |S(s)ϕ′(0)|α + ‖(−A)α−1‖µ0b1c1(δ)s

}
<

1

2
,

consequently

|K(u)(t)− ϕ(0)|α ≤ |C(t)ϕ(0)− ϕ(0)|α + |S(t)ϕ′(0)|α + ‖(−A)α−1‖µ0b21c1(δ) <
1

2
for t ∈ [0, b1].

On the other hand using equation (2.1) and Proposition 2.3 we have

(K(u))′(t) = C ′(t)ϕ(0) + S′(t)ϕ′(0) +

∫ t

0

C(t− s)f(us, u
′
s)ds for t ≥ 0

|(K(u))′(t)− ϕ′(0)|α ≤ |AS(t)ϕ(0)|α + |C(t)ϕ′(0)− ϕ′(0)|α +
∥∥∥(−A)α−1

∫ t

0

AC(t− s)f(us, u
′
s)ds

∥∥∥
≤ |AS(t)ϕ(0)|α + |C(t)ϕ′(0)− ϕ′(0)|α + ‖(−A)α−1‖ µ0 sup

s∈[0,b1]
‖f(us, u

′
s)‖t

≤ |AS(t)ϕ(0)|α + |C(t)ϕ′(0)− ϕ′(0)|α + ‖(−A)α−1‖ µ0c1(δ)t.

We also choose b1 sufficiently small such that

sup
s∈[0,b1]

{
|AS(s)ϕ(0)|α + |C(s)ϕ′(0)− ϕ′(0)|α + ‖(−A)α−1‖ µ0c1(δ)s

}
<

1

2
,

consequently

|(K(u))′(t)− ϕ′(0)|α <
1

2
.

10
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Finally we have

|K(u)(t)− ϕ(0)|α + |(K(u))′(t)− ϕ′(0)|α < 1,

hence K(Zϕ) ⊂ Zϕ.

Let u, v ∈ Zϕ and t ∈ [0, b1]. Then we have

|K(u)(t)−K(v)(t)|α =
∣∣∣ ∫ t

0

S(t− s)(f(us, u
′
s)− f(vs, v

′
s))ds

∣∣∣
α

≤
∥∥∥− (−A)α−1

∫ t

0

(∫ t−s

0

AC(σ)[f(us, u
′
s)− f(vs, v

′
s)]dσ

)
ds
∥∥∥

≤ ‖(−A)α−1‖µ0b1

∫ t

0

‖f(us, u
′
s)− f(vs, v

′
s)‖ds

≤ ‖(−A)α−1‖µ0b
2
1c0(δ)‖u− v‖Cα .

Since
sup

s∈[0,b1]

{
|C(s)ϕ(0)− ϕ(0)|α + |S(s)ϕ′(0)|α + ‖(−A)α−1‖µ0b1c1(δ)s

}
<

1

2
,

it follows that

|K(u)(t)−K(v)(t)|α <
1

2
‖u− v‖|Cα .

Using the same reasoning like previously, we have

|(K(u))′(t)− (K(v))′(t)|α =
∣∣∣ ∫ t

0

C(t− s)(f(us, u
′
s)− f(s, vs, v

′
s))ds

∣∣∣
α

<
1

2
‖u− v‖|Cα .

Adding the two previous equations

‖(K(u))− (K(v))‖Cα < ‖u− v‖|Cα ,

it follows that K is a strict contraction in Zϕ. Thus by a fixed point theorem, K has a unique fixed
point u in Zϕ.
Let û an other mild solution of equation (1.1) on Zϕ corresponding to ϕ. Then we have

‖u− û‖Cα = ‖(K(u))− (K(û))‖Cα
< ‖u− û‖|Cα ,

which gives a contradiction. We conclude that equation (1.1) has one and only one mild solution
which is defined on [−r, b1] and denoted by u(., ϕ). Using the same arguments, we can show that
u(., ϕ) can be extended to a maximal interval of existence [0, bϕ[. If we assume that bϕ < +∞ and
limt→b−ϕ (|u(t, ϕ)|α + |u′(t, ϕ)|α) < +∞, then there exists a constant δ > 0 such that (|u(t, ϕ)|α +

11



I. Zabsonre et al./ jmpao Vol. 01 N◦01 (2022)

|u′(t, ϕ)|α) ≤ α for all t ∈ [0, bϕ[. We claim that u(., ϕ) and u′(., ϕ) are uniformly continuous.
Consequently

lim
t→b−ϕ

(u(t, ϕ) + u′(t, ϕ)) exists,

which contradicts the maximality of [0, bϕ[. Let us show the uniform continuity of u(., ϕ) and u′(., ϕ).
Let t, t+h ∈ [0, bϕ[, h > 0 and θ ∈ [−r, 0]. If t+θ ≥ 0, then the map t 7→ C(t+θ)ϕ(0)+S(t+θ)ϕ′(0)
is uniformly continuous. On the other hand let µ be a positive number such that ‖AC(t‖ ≤ µ for
all t ∈ [0, bϕ[ and pose u(., ϕ) = u. We have

u(t+ h+ θ)− u(t+ θ) = C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0) + S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)

+

∫ t+θ+h

0
S(t+ θ + h− s)f(us, u′s)ds−

∫ t+θ

0
S(t+ θ − s)f(us, u′s)ds

= C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0) + S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)

+

∫ t+θ

0
S(s)f(ut+θ+h−s, u

′
t+θ+h−s)ds+

∫ t+θ+h

t+θ
S(s)f(ut+θ+h−s, u

′
t+θ+h−s)ds

= C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0) + S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)

+

∫ t+θ

0
S(s)

[
f(ut+θ+h−s, u

′
t+θ+h−s)− f(ut+θ−s, u

′
t+θ−s)

]
ds

+

∫ t+θ+h

t+θ
S(s)f(ut+θ+h−s, u

′
t+θ+h−s)ds.

Thus, using the local Lipschitz condition of f , we have

|u(t+ h+ θ, ϕ)− u(t+ θ, ϕ)|α ≤ |C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0)|α + |S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)|α

+
∥∥∥(−A)α−1

∫ t+θ

0

(∫ t−s

0
AC(σ)

[
f(ut+θ+h−s, u

′
t+θ+h−s)− f(ut+θ−s, u

′
t+θ−s)

]
dσ
)
ds
∥∥∥

+
∥∥∥(−A)α−1

∫ t+θ+h

t+θ

(∫ t−s

0
AC(σ)f(ut+θ+h−s, u

′
t+θ+h−s)dσ

)
ds
∥∥∥

≤ |C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0)|α + |S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)|α

+‖(−A)α−1‖µbϕ
∫ t+θ

0
‖f(ut+θ+h−s, u′t+θ+h−s)− f(ut+θ−s, u

′
t+θ−s)‖ds

+‖(−A)α−1‖µbϕ
∫ t+θ+h

t+θ
‖f(ut+θ+h−s, u′t+θ+h−s)‖ds

≤ |C(t+ h+ θ)ϕ(0)− C(t+ θ)ϕ(0)|α + |S(t+ h+ θ)ϕ′(0)− S(t+ θ)ϕ′(0)|α

+‖(−A)α−1‖µbϕc1(δ)h+ ‖(−A)α−1‖µbϕ
∫ t

0
‖us+h − us‖Cαds

If t+ θ < 0. Let h0 > 0 sufficiently small such for h ∈]0, h0[

|ut+h(θ)− ut(θ)|α ≤ sup
−r≤σ≤0

|u(σ + h)− u(σ)|α = ‖uh − ϕ‖α

12
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Since the map t 7→ C(t)ϕ(0) + S(t)ϕ′(0) is uniformly continuous, consequently, for t, t+ h ∈ [0, bϕ[
and h ∈]0, h0[, we have

‖ut+h(.)− ut(.)‖α ≤ δ1(h) + δ2(h) + ‖(−A)α−1‖µbϕc1(δ)h+ ‖(−A)α−1‖µbϕc0(δ)

∫ t

0

‖us+h − us‖Cαds

where

δ1(h) = ‖uh−ϕ‖α and δ2(h) = sup
t

t+h∈[0,bϕ[

(
|C(t+h)ϕ(0)−C(t)ϕ(0)|α+|S(t+h)ϕ′(0)−S(t)ϕ′(0)|α

)
.

From [11] (in Proposition 2.4), t → C(t)ϕ(0) + S(t)ϕ′(0) belongs to C2([0, bϕ];X), by a similar
reasoning, we also have

‖u′t+h(.)− u′t(.)‖α ≤ δ′1(h) + δ′2(h) + ‖(−A)α−1‖µc1(δ)h+ ‖(−A)α−1‖µc0(δ)

∫ t

0

‖us+h(.)− us(.)‖Cαds

where

δ′1(h) = ‖u′h−ϕ′‖α and δ′2(h) = sup
t

t+h∈[0,bϕ[

(
|AS(t+h)ϕ′(0)−AS(t)ϕ′(0)|α+|C(t+h)ϕ′(0)−C(t)ϕ′(0)|α

)
.

Adding the previous inequality, we have

‖ut+h(.)− ut(.)‖Cα ≤ γ(h) + ‖(−A)α−1‖µc0(δ)(1 + bϕ)

∫ t

0

‖us+h − us‖Cαds,

with
γ(h) = δ1(h) + δ2(h) + δ′1(h) + δ′2(h) + ‖(−A)α−1‖µc1(δ)(1 + bϕ)h.

By Gronwall’s lemma, it follows that

‖ut+h(., ϕ)− ut(., ϕ)‖Cα ≤ γ(h)exp[‖(−A)α−1‖µc0(δ)(1 + bϕ)bϕ].

This completes that u and u′ are uniformly continuous and u can be extended over [0, bϕ+η], which
contradicts the maximality of [0, bϕ[. Using the same reasoning, one can show a similar result for
h < 0.
Now, we want to prove that the solution depends continuously on initial data. Let ϕ ∈ Cα and
t ∈ [0, bϕ[ be fixed. Set

δ = 1 + sup
−r≤s≤t

‖us(., ϕ)‖Cα

and
c(t) =

(
2M1e

−ωt + µbϕ

)
exp
(
‖(−A)α−1‖c0(δ)µ(1 + bϕ)t

)
.

Let ε ∈]0, 1[ and ψ ∈ Cα such that ‖ϕ− ψ‖Cα < ε. Then

‖ψ‖Cα ≤ ‖ϕ‖Cα + ε < δ.

We define
b0 := sup{s > 0 : ‖uσ(., ψ)‖Cα ≤ δ for σ ∈ [0, s]}.

13
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If we suppose that b0 < t, we obtain for s ∈ [0, b0]

‖us(., ϕ)− us(., ψ)‖α ≤ M1e
−ωs‖ϕ− ψ‖α +M1e

−ωs‖ϕ′ − ψ′‖α

+
∥∥∥(−A)α−1

∫ s

0

(∫ s−σ

0
AC(ξ)[f(uσ(., ϕ), u

′
σ(., ϕ))− f(uσ(., ψ), u′σ(., ψ))]dξ

)
dσ
∥∥∥

≤ M1e
−ωs‖ϕ− ψ‖α +M1e

−ωs‖ϕ′ − ψ′‖α

+‖(−A)α−1‖µbϕ
∫ s

0
‖f(uσ(., ϕ), u′σ(., ϕ))− f(uσ(., ψ), u′σ(., ψ))‖dσ

≤ M1e
−ωs‖ϕ− ψ‖α +M1e

−ωs‖ϕ′ − ψ′‖α + ‖(−A)α−1‖µbϕc0(δ)
∫ s

0
‖uσ(., ϕ)− uσ(., ψ)‖Cαds.

On the other hand, we also have

‖u′s(., ϕ)− u′s(., ψ)‖α ≤
∥∥∥∫ s

0
AC(σ)[ϕ(0)− ψ(0)]dσ

∥∥∥
α
+M1e

−ωs‖ϕ′ − ψ′‖α + ‖(−A)α−1‖c0(δ)µ
∫ s

0
‖uσ(., ϕ)− uσ(., ψ)‖Cαds

≤ µbϕ‖ϕ− ψ‖Cα +M1e
−ωt‖ϕ′ − ψ′‖α + ‖(−A)α−1‖c0(δ)µ

∫ s

0
‖uσ(., ϕ)− uσ(., ψ)‖Cαds.

By adding the previous inequality, we have

‖us(., ϕ)− us(., ψ)‖Cα ≤
(
2M1e

−ωt + µbϕ
)
‖ϕ− ψ‖Cα + ‖(−A)α−1‖c0(δ)µ(1 + bϕ)

∫ s

0
‖uσ(., ϕ)− uσ(., ψ)‖Cαds.

By Gronwall’s lemma, we deduce that

‖us(., ϕ)− us(., ψ)‖Cα ≤ c(t)‖ϕ− ψ‖Cα . (3.3)

This implies that

‖us(., ψ)‖Cα ≤ c(t)ε+ δ − 1 < δ for all s ∈ [0, b0].

It follows that b0 cannot be the largest number s > 0 such that ‖us(., ψ)‖Cα < δ, for σ ∈ [0, s].
Thus b0 ≥ t and t < bψ. Furthermore, ‖us(., ϕ)‖Cα < δ for s ∈ [0, t], then using the inequality (3.3)
we deduce the continuous dependence on the initial data.�

Corollary 3.6. Assume that (H0), (H2), (H3) and (H4) hold. Let ϕ ∈ Cα such that ϕ(0) ∈
D(A) and ϕ′(0) ∈ E. Let k1 be a continuous function on R+ and k2 ∈ L1

loc(R+;R+) be such that
‖f(ϕ,ϕ′)‖ ≤ k1(t)‖ϕ‖Cα + k2(t) for t ≥ 0 and ϕ,ϕ′ ∈ Cα. Then equation (1.1) has a unique mild
solution which is defined for all t ≥ 0.

Proof. Let [−r, bϕ[ denote the maximal interval of existence of the mild solution u(t, ϕ) of equation
(1.1). Then

bϕ = +∞ or limt→b−ϕ (|u(t, ϕ)|α + |u′(t, ϕ)|α) = +∞.
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If bϕ < +∞, then limt→b−ϕ (|u(t, ϕ)|α + |u′(t, ϕ)|α) = +∞. Thus, we have

|u(t, ϕ)|α ≤ |C(t)ϕ(0)|α + |S(t)ϕ′(0)|α +
∣∣∣ ∫ t

0

S(t− s)f(us, u
′
s)ds

∣∣∣
α

≤ M1e
−ωbϕ(|ϕ(0)|α + |ϕ′(0)|α) +

∥∥∥(−A)α−1
∫ s

0

(∫ t−s

0

AC(ξ)f(us(., ϕ), u′s(., ϕ))dξ
)
ds
∥∥∥

≤ k0 + ‖(−A)α−1‖µbϕ
∫ t

0

k1(s)‖us‖Cαds for t ∈ [0, bϕ[,

where

k0 = (2M1e
−ωbϕ + µbϕ)(|ϕ(0)|α + |ϕ′(0)|α) + ‖(−A)α−1‖µ(bϕ + 1)

∫ bϕ

0

k2(s)ds
]
.

On the other hand, we have

|u′(t, ϕ)|α ≤ µbϕ|ϕ′(0)|α +M1e
−ωbϕ |ϕ′(0)|α + ‖(−A)α−1‖µ

∫ t

0

‖f(us, u
′
s)‖ds

≤ k0 + ‖(−A)α−1‖µ
∫ t

0

k1(s)‖us‖Cαds for t ∈ [0, bϕ[.

By Gronwall’s lemma, we deduce that

‖ut(ϕ)‖Cα ≤ 2k0 exp
(
‖(−A)α−1µ(bϕ + 1)

∫ t

0

k1(s)
)
ds < +∞ for t ∈ [0, bϕ[,

and
limt→b−ϕ (|u(t, ϕ)|α + |u′(t, ϕ)|α) < +∞,

which gives a contradiction.�

As an immediat consequence, we get the following result.

Corollary 3.7. Assume that (H0) and (H2) hold and there exists a positive constant L such that
for ϕ1, ϕ2 ∈ Cα

‖f(ϕ1, ϕ
′
1)− f(ϕ2, ϕ

′
2)‖ ≤ L‖ϕ1 − ϕ2‖Cα for t ≥ 0.

Let ϕ ∈ Cα such that ϕ(0) ∈ D(A) and ϕ′(0) ∈ E. Then equation (1.1) has a unique mild solution
which is defined for all t ≥ 0.

4 Existence of strict solutions
Theorem 4.1. Assume that (H0) and (H2) hold and f is continuously differentiable. Moreover
assume that the partial derivatives D1f and D2f are locally Lipschitz in the classical sense. Let ϕ be
in C3([−r, 0], D((−A)α) such that ϕ(0), ϕ′′(0) ∈ D(A), ϕ′(0), ϕ(3)(0) ∈ E, ϕ′′(0) = Aϕ(0)+f(ϕ,ϕ′)
and ϕ(3)(0) = Aϕ′(0). Then the corresponding mild solution u is a strict solution of equation (1.1).
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Proof. Let ϕ be in C3([−r, 0], X) such that ϕ(0), ϕ′′(0) ∈ D(A), ϕ′(0), ϕ(3)(0) ∈ E, ϕ′′(0) =
Aϕ(0) + f(ϕ,ϕ′) and ϕ(3)(0) = Aϕ′(0). Let u be the corresponding mild solution of equation (1.1)
which is defined on some maximal interval [0, bϕ[ and let a < bϕ. Then by using the strict contraction
principle, we can show that there exists a unique continuous function v such that

v(t) =


C(t)(Aϕ(0) + f(ϕ,ϕ′)) + S(t)Aϕ′(0) +

∫ t

0

C(t− s)[D1f(us, u
′
s)u
′
s +D2f(us, u

′
s)vsds]

v0 = ϕ′′.

We introduce the function w defined by

w(t) = ϕ′(0) +

∫ t

0

v(s)ds if t ≥ 0

w(t) = ϕ′(t) if − r ≤ t ≤ 0

w′(t) = ϕ′′(t) if − r ≤ t ≤ 0.

We will show that w = u′. We can also see that

wt = ϕ′ +

∫ t

0

vsds for t ∈ [0, a].

Consequently, the maps t→ wt and t→
∫ t

0

C(t− s)f(us, ws)ds are continuously differentiable and

the following formula holds

d

dt

∫ t

0

C(t− s)f(us, ws)ds =
d

dt

∫ t

0

C(s)f(ut−s, wt−s)ds

= C(t)f(ϕ,ϕ′) +

∫ t

0

C(t− s)[D1f(us, ws)u
′
s +D2f(us, ws)w

′
sds]

= C(t)f(ϕ,ϕ′) +

∫ t

0

C(t− s)[D1f(us, ws)u
′
s +D2f(us, ws)vsds],

which implies∫ t

0

C(s)f(ϕ,ϕ′)ds =

∫ t

0

C(t− s)f(us, ws)ds−
∫ t

0

C(t− s)[D1f(us, ws)u
′
s +D2f(us, ws)vsds].

Consequently we have

w(t) = ϕ′(0) +

∫ t

0
C(s)Aϕ(0) ds+

∫ t

0
C(t− s)f(us, ws)ds+

∫ t

0
S(s)Aϕ′(0) ds

−
∫ t

0

∫ s

0
C(s− τ)[D1f(uτ , wτ )u

′
τ +D2f(uτ , wτ )vτ ]dτds+

∫ t

0

∫ s

0
C(s− τ)[D1f(uτ , u

′
τ )u
′
τ +D2f(uτ , u

′
τ )vτ ]dτds.
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Since by equation (2.1) and Proposition 2.3, we have∫ t

0

C(s)Aϕ(0)ds = S(t)Aϕ(0)

∫ t

0

S(s)Aϕ′(0) ds = C(t)ϕ′(0)− ϕ′(0),

it follows that

w(t) = S(t)Aϕ(0) +

∫ t

0

C(t− s)f(us, ws)ds+ C(t)ϕ′(0)

+

∫ t

0

∫ s

0

C(s− τ)
[
D1f(uτ , u

′
τ )u′τ −D1f(uτ , wτ )u′τ

]
dτds

+

∫ t

0

∫ s

0

C(s− τ)
[
D2f(uτ , u

′
τ )vτ −D2f(uτ , wτ )vτ

]
dτds.

Since for t ≥ 0, we have

u′(t) = AS(t)ϕ(0) + C(t)ϕ′(0) +

∫ t

0

C(t− s)f(us, u
′
s)ds,

then for t ∈ [0, a], we have

|u′(t)− w(t)|α ≤
∣∣∣ ∫ t

0
C(t− s)[f(us, u′s)− f(us, ws)]ds

∣∣∣
α
+
∣∣∣ ∫ t

0

∫ s

0
C(s− τ)

[
D1f(uτ , u

′
τ )u
′
τ −D1f(uτ , wτ )u

′
τ

]
dτds

∣∣∣
+
∣∣∣ ∫ t

0

∫ s

0
C(s− τ)

[
D2f(uτ , u

′
τ )vτ −D2f(uτ , wτ )vτ

]
dτds

∣∣∣. (4.1)

Let H = {u′s, ws : s ∈ [0, a]}. Then H is a compact set, it follows that f , D1f and D2f are globally
lipschitz on H. Let c1 be such that for t ∈ [0, a] and x, y ∈ H, we have

‖f(x, x′)− f(y, y′)‖ ≤ c1‖x− y‖Cα
‖D1f(x, x′)−D1f(y, y′)‖ ≤ c1‖x− y‖Cα
‖D2f(x, x′)−D2f(y, y′)‖ ≤ c1‖x− y‖Cα .

Consequently, using equation (4.1) we can find a positive constant k(a) such that by Gronwall’s
lemma,

‖u′τ − wτ‖α ≤ k(a)

∫ t

0

‖u′s − ws‖Cαds for s ∈ [0, a],

which implies that u′ = w. Consequently, we deduce that the mild solution is twice continuously
differentiable from [−r, a] to X. We deduce that u is a strict solution of equation (1.1) on [0, a].
This holds for any a < bϕ.�
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5 Application
For illustration, we propose to study the existence of solutions for the following model

∂2z(t, ξ)

∂t2
=
∂2z(t, ξ)

∂x2
+ g
(
t,
∂

∂x
[z(t+ θ, ξ)],

∂

∂x
[z′(t+ θ, ξ)]

)
for t ≥ 0 and ξ ∈ [0, π]

z(t, 0) = z(t, π) = 0 for t ≥ 0

z(θ, ξ) = ϕ0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],

(5.1)

where g : R × R × R → R is continuous and there exists a positive constant L such that for
x, y, x1, y1 ∈ R

|g(t, x, y)− g(t, x1, y1)| ≤ L(|x− x1|+ |y − y1|).

For example, we can take g(t, x, y) = e−t
2
[

sin
(x

2

)
+ sin

(y
2

)]
for (t, x, y) ∈ R×R×R. We can see

that |g(t, x1, y1)− g(t, x2, y2)| ≤ 1

2
(|x1 − x2|+ |y1 − y2|). The function ϕ0 : [−r, 0]× [0, π]→ R can

be defined by ϕ0(θ, ξ) = e−θ sin ξ. To rewrite equation (5.1) in the abstract form, we introduce the
space X = L2([0, π];R), functions vanishing at 0 and π, equipped with the L2 norm that is to say
for all u ∈ X,

|u|L2 =
(∫ π

0

|u(x)|2dx
) 1

2

.

Let en(x) =

√
2

π
sin(nx), x ∈ [0, π], n ∈ N∗, then (en)n∈N∗ is an orthonormal base for X. Let

A : X → X be defined by{
Ay = y′′

D(A) =
{
y ∈ X : y, y’ are absolutely continuous, y′′ ∈ X, y(0) = y(π) = 0

}
,

then

Ay =

+∞∑
n=1

−n2(y, en)en, y ∈ D(A),

where
(g, h) =

∫ π

0

g(s)h(s)ds, for g, h ∈ X.

It is well known that A is the infinitesimal generator of strongly continuous cosine family C(t), t ∈ R
in X given by

C(t)y =

+∞∑
n=1

cosnt(y, en)en, y ∈ X,

and that the associated sine family is given by

S(t)y =

+∞∑
n=1

1

n
sin(nt)(y, en)en, y ∈ X.
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If we choose α =
1

2
, then (H0) and (A1) are satisfied since

(−A)
1
2 y =

+∞∑
n=1

n(y, en)en, y ∈ D
(

(−A)
1
2

)
and

(−A)
−1
2 y =

+∞∑
n=1

1

n
(y, en)en, y ∈ X.

From [10], the compactness A−1 follows from Lemma 2.6, and the fact that the eigenvalues of

(−A)
−1
2 are λn =

1

n
, n = 1, 2, ..., then (H2) is satisfied.

We define the phase space
C = C1([−r, 0];X)

where C1([−r, 0];X) is the space of bounded uniformly continuous differentiable functions from
[−r, 0] into X with the norm |ϕ| = sup

−r≤θ≤0
|ϕ(θ)| and let f : R× C 1

2
× C 1

2
→ X be defined by

f(t, ϕ, ϕ′)(x) = g
(
t,
∂

∂x
[ϕ(θ)(x)],

∂

∂x
[ϕ′(θ)(x)]

)
for x ∈ [0, π], ϕ ∈ C 1

2
and t ≥ 0,

where ϕ ∈ C is defined by

ϕ(θ)(x) = ϕ0(θ, x) for θ ≤ 0 and x ∈ [0, π]

and the norm in C 1
2
is given by

‖ϕ‖C 1
2

= sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]
∣∣∣2dx) 1

2

+ sup
θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]
∣∣∣2dx) 1

2

.

Let us pose v(t) = z(t, x). Then equation (5.1) takes the following abstract form
v′′(t) = Av(t) + f(t, vt, v

′
t) for t ≥ 0

v0 = ϕ

v′0 = ϕ′.

(5.2)

From [10], for all y ∈ X 1
2
, y is absolutely continuous and |y| 1

2
= |y′|L2 . Let ϕ,ψ ∈ C1([−r, 0];X 1

2
),

since |g(t, x1, y1)− g(t, x2, y2)| ≤ 1

2
(|x1 − x2|+ |y1 − y2|), then we have

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 =
(∫ π

0

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|2dx
) 1

2

=
(∫ π

0

(
g
(
t,
∂

∂x
[ϕ(θ)(x)],

∂

∂x
[ϕ′(θ)(x)]

)
− g
(
t,
∂

∂x
[ψ(θ)(x)],

∂

∂x
[ψ′(θ)(x)]

))2
dx
) 1

2

≤ 1

2

(∫ π

0

( ∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣+ ∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣)2dx) 1
2
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By using the Minkowski’s inequality, we have

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 ≤ 1

2

(∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
1

2

(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2

≤ 1

2
sup

θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ(θ)(x)]− ∂

∂x
[ψ(θ)(x)]

∣∣∣2dx) 1
2

+
1

2
sup

θ∈[−r,0]

(∫ π

0

∣∣∣ ∂
∂x

[ϕ′(θ)(x)]− ∂

∂x
[ψ′(θ)(x)]

∣∣∣2dx) 1
2
,

which implies that

|f(t, ϕ, ϕ′)− f(t, ψ, ψ′)|L2 ≤ 1

2
‖ϕ− ψ‖C 1

2

Consequently the function f satifies the condition of Corrolary 3.7. Then equation (5.2) has a unique
mild solution which is defined for t ≥ 0. For the regularity, we make the following assumptions.

(H5) g ∈ C1(R× R× R;R), such that
∂g

∂t
,
∂g

∂x
and

∂g

∂y
are locally lipschitz continuous.

(H6) 

ϕ ∈ C3([−r, 0]× [0, π]) such that ϕ(0), ϕ′′(0) ∈ D(A), ϕ′(0), ϕ(3)(0) ∈ E

∂2

∂θ2
ϕ(0, x) =

∂2

∂x2
ϕ(0, x) +

∫ 0

−r
g(ϕ(θ, x))dθ for x ∈ [0, π],

∂3

∂θ3
ϕ(0)(x) =

∂2

∂x2
ϕ′(0, x) for x ∈ [0, π].

Proposition 5.1. Under the above assumptions, equation (5.1) has a unique strict solution u
defined for t ≥ 0 and x ∈ [0, π].
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