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1 Introduction
Let Ω be an open and bounded domain of RN , where N ∈ {1, 2, 3}, with a boundary Γ of class

C2. For a time T > 0 and the life expectancy of an individual A > 0, define the following sets:

U = (0, T )× (0, A), Q = U × Ω, QA = (0, A)× Ω, QT = (0, T )× Ω,

Σ = U × Γ, Σ1 = U × Γ1,

where Γ1 is a nonempty open subset of Γ. We denote by ν the outer normal on Γ. We now consider
the following problem: 

∂y
∂t + ∂y

∂a −∆y + µy = ξ +
∑M
i=1 λiξ̂i in Q,

y(0, a, x) = y0 + τ ŷ0 in QA,
y(t, 0, x) =

∫ A
0
β(t, a, x)y(t, a, x) da in QT ,

y = 0 on Σ1,
∂y
∂ν = 0 on Σ \ Σ1.

(1.1)

It is assumed that µ ≥ 0 and β ≥ 0. The parameters of the problem have the following meanings:
the final time T > 0 represents the horizon of the problem, the bound A > 0 represents the life
expectancy, β is the natural fertility rate, and the function µ = µ(t, a, x) is the natural death rate of
individuals aged a at time t > 0 and position x. The functions ξ and y0 are known, with ξ ∈ L2(Q)

and y0 ∈ L2(Ω). However, the terms
∑M
i=1 λiξ̂i (the so-called pollution term) and τ ŷ0 (the so-called

perturbation term) are unknown. Here, ξ̂i and ŷ0 are renormalized and represent the size of the
pollution and the perturbation, respectively.

‖ξ̂i‖L2(Q) ≤ 1 for i = 1, · · · ,M and ‖ŷ0‖L2(Ω) ≤ 1.

So that the real numbers {λi}1≤i≤M and τ are sufficiently small, and the functions ξ̂i, for
1 ≤ i ≤M , are linearly independent.

In the model (1.1), we are interested in identifying the parameters λi in the state equation,
independently of the variation τ ŷ0 around the initial data. To identify these parameters, we use
the sentinel method. In this paper, we construct sentinels when the supports of the observation
function and the control function are contained in two distinct open subsets of RN (see Nakoulima
[14]).
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The theory of sentinels relies on three features: a state equation, an observation function, and
a control function w to be determined.

• A state equation, represented here by (1.1), for which we assume that (1.1) has a unique solution
denoted by y = y(t, a, x, λ, τ) = y(λ, τ), depending on two parameters, λ = {λ1, . . . , λM} and
τ , in some relevant space. We assume the following [2]:

(H1) :

{
β ∈ L∞+ (Q), β(t, a, x) ≥ 0 in Q,

∃a1 ∈ (0, A), β(a, ·, ·) = 0 for a ∈ (a1, A).

(H2) : µ ∈ L∞loc (]0, A[;L∞((0, T )× Ω)) , µ ≥ 0 a.e. in QA.

(H3) :

 lim
a→A

∫ t
0
µ(a− ι, t− ι, x) dι = +∞, a.e. in QA,

lim
a→A

∫ a
0
µ(a− ι, t− ι, x) dι = +∞, a.e. in QA.

• An observation yobs. Let O ⊂ Ω be a non-empty open subset called the observation set. The
observation is the value of y in O over the time interval [0, T ]. We denote this observation
by yobs, and it is given by the equation:

yobs = m0 ∈ L2(U ×O), (1.2)

where m0 is the observation function.

• A function S = S(λ, τ) is called a "sentinel". Let h0 ∈ L2(U ×O) be a given function. Let ω be
another open, non-empty subset of Ω, such that ω 6= O. For a control function w ∈ L2(U×ω),
we define the functional S(λ, τ) as:

S(λ, τ) =

∫
U

∫
O
h0 y(λ, τ) dt da dx+

∫
U

∫
ω

w y(λ, τ) dt da dx. (1.3)

We say that S defines a sentinel for the problem (1.1) if there exists a control w such that:

- S is insensitive (to first order) with respect to the missing terms τ ŷ0, which means:

∂S

∂τ
(0, 0) = 0 ∀ ŷ0. (1.4)

- S is sensitive (to first order) with respect to the pollution terms λiξ̂i:

∂S

∂λi
(0, 0) = ci, 1 ≤ i ≤M, (1.5)

where ci are given constants, not all of which are identically zero.
- The control w has minimal norm in L2(U × ω) among the admissible controls. That is:

‖w‖L2(U×ω) = min
u∈E
‖u‖L2(U×ω), (1.6)

where
E =

{
u ∈ L2(U × ω) | (u, S(u)) satisfies (1.3)− (1.5)

}
.
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Several authors have studied sentinel problems. We refer to [9], [11], and [14] for further details.
In [9], G. M. Mophou and O. Nakoulima studied the problem of sentinels with given sensitivity.
O. Bodart and collaborators applied the sentinel method in [23] to identify an unknown boundary.
In [24], B. Ainseba and collaborators used the sentinel method to identify pollution parameters in
a river. Recently, the author S. Sawadogo introduced the concept of distributed sentinels in [26]
within the framework of population dynamics equations to study a population subject to migratory
phenomena.

In this paper, we apply the sentinel method to identify parameters in population dynamics
with age dependence, spatial structure, and incomplete data. The problem is as follows: Given
h0 ∈ L2(U × O), find a control function w ∈ L2(U × ω) such that if y = y(λ, τ) is the solution of
equation (1.1) and S is defined by equation (1.3), then conditions (1.4) and (1.5) hold.

In the following, we assume without loss of generality that:

ξ = 0 in Q and y0 = 0 in QA.

Remark 1.1. Consider the function yτ = ∂y
∂τ , where y corresponds to the parameter values λ = 0

and τ = 0. Similarly, define the function yλi = ∂y
∂λi

, where y corresponds to the parameter values
λi = 0 and τ = 0. The functions yτ and yλi are the solutions of the following problems:

∂yτ
∂t + ∂yτ

∂a −∆yτ + µyτ = 0 in Q,

yτ (0, a, x) = ŷ0 in QA,

yτ (t, 0, x) =
∫ A

0
β(t, a, x)yτ (t, a, x) da in QT ,

yτ = 0 on Σ1,
∂yτ
∂ν = 0 on Σ \ Σ1.

(1.7)



∂yλi
∂t +

∂yλi
∂a −∆yλi + µyλi = ξ̂i in Q,

yλi(0, a, x) = 0 in QA,

yλi(t, 0, x) =
∫ A

0
β(t, a, x)yλi(t, a, x) da in QT ,

yλi = 0 on Σ1,
∂yλi
∂ν = 0 on Σ \ Σ1.

(1.8)

Under the assumptions (H1)−(H3), the linear problems (1.7) and (1.8) each have a unique solution:
yτ such that yτ (t, A, x) = 0, and yλi such that yλi(t, A, x) = 0. For the details of the proof, we refer
to [4, 9, 17].

Remark 1.2. If the function S defined by (1.3)-(1.5) exists, then it is unique since w verifies (1.6).
In this case, to estimate the parameters λi, one proceeds as follows: Assume that the solution of
the state equation (1.1) when λ = 0 and τ = 0 is known. Then one has the following information:

S(λ, τ)− S(0, 0) '
M∑
i=1

λi
∂S

∂λi
(0, 0).

Therefore, fixing i, j ∈ {1, . . . ,M} and choosing i and j such that

∂S

∂λj
(0, 0) = 0 for j 6= i and

∂S

∂λi
(0, 0) = 1,
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one obtains the following estimate of the parameter λi:

λi '
1

ci
(S(λ, τ)− S(0, 0)) .

Definition 1.3. We will refer to the function S given by (1.3)-(1.5) as the sentinel function with
given {ci} sensitivity.

Let χω be the characteristic function of the set ω. We set

Yλ = Span {yλ1
χω, . . . , yλMχω} , (1.9)

the vector subspace of L2(U × ω) generated by the M independent functions yλiχω, 1 ≤ i ≤ M .
We denote by Y ⊥λ the orthogonal of Yλ in L2(U × ω).{

any function k ∈ Yλ such that
∂k
∂t + ∂k

∂a −4k + µk = 0, in U × ω, is identically zero in U × ω.
(1.10)

Next, we consider the following general null-controllability problem: Given h ∈ L2(Q), find v ∈
L2(U × ω) such that

v ∈ Y ⊥λ , (1.11)

and such that q = q(t, a, x, v) ∈ L2(Q) which is solution of

−∂q∂t −
∂q
∂a −4q + µq = βq(t, 0, x) + h+ vχω in Q,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

q = 0 on Σ1,
∂q
∂ν = 0 on Σ \ Σ1;

(1.12)

satisfies
q(0, a, x, v) = 0 in QA; (1.13)

with v of minimal norm in L2(U × ω), that is

‖v‖L2(U×ω) = min
w∈ε
‖w‖L2(U×ω); (1.14)

where

ε =
{
v ∈ Y ⊥λ such that (v, q = q(t, a, x, v)) is subject to (1.12)− (1.13)

}
(1.15)

For the evolution equations, other topics such as exact controllability and approximate controllabil-
ity are considered. For example, in [27], the exact controllability of semi-linear stochastic evolution
equations is studied, and in [28], the interior approximate controllability of the semi-linear heat
equation is proved.

For the problem (1.11)–(1.14), two main aspects are considered. The first one consists of solving
the null-controllability problem, and the second one consists of characterizing the optimal solution
of (1.14) by some optimality system. The problem (1.11)–(1.14) is solved when Yλ = {0} (i.e., the
setting without constraints or free constraints) in several cases by various methods [2, 3]. In the
present paper, both aspects are considered in the general setting Yλ 6= {0}. More precisely, we have
the following results:
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Theorem 1.4. Assume that the above hypotheses on Ω, ω, O, and the data of the equation (1.1)
are satisfied. Then the existence of the sentinel function in (1.3)–(1.6) holds if and only if the null
controllability problem with a constraint on the control in (1.11)–(1.14) holds.

The proof of the null controllability problem with a constraint on the control in (1.11)–(1.14)
relies on the existence of a function θ and a Carleman inequality adapted to the constraint (cf.
Subsection 2.2), for which we have the following result:

Theorem 1.5. Assume that the hypotheses of Theorem 1.4 and the condition (1.10) are satis-
fied. Then there exists a positive weight function θ such that, for any function h ∈ L2(Q) with
θh ∈ L2(Q), the null controllability problem with a constraint on the control in (1.11)–(1.14) holds.
Moreover, the control is given by:

v̂θ = −(ρ̂θ − P ρ̂θχω)χω, (1.16)

where ρ̂θ is a solution of:
∂ρ̂θ
∂t + ∂ρ̂θ

∂a −∆ρ̂θ + µρ̂θ = 0 in Q,

ρ̂θ(t, 0, x) =
∫ A

0
β(t, a, x)ρ̂θ(t, a, x) da in QT ,

ρ̂θ = 0 on Σ1,
∂ρ̂θ
∂ν = 0 on Σ \ Σ1.

(1.17)

and P is the orthogonal projection operator from L2(U × ω) into Yλ.

The remainder of the paper is organized as follows. Section 2 is devoted to some preliminary
results. In this section, we prove Theorem 1.4 and establish the inequality adapted to the constraint
(1.11). In Section 3, we prove the existence and uniqueness of the solution for the controllability
problem (1.11)–(1.14) of Theorem 1.4 and provide the proof of Theorem 1.5. Finally, Section 4
presents the expression of the sentinel S defined by (1.3)–(1.5), as well as the estimate of the
parameters λi.

2 Preliminary results

2.1 Proof of Theorem 1.4

Since yτ and yλ are solutions of equations (1.7) and (1.8), respectively, the insensitivity condition
(1.4) and the sensitivity conditions (1.5) hold if and only if the following hold:∫

U

∫
O
h0yτ dt da dx+

∫
U

∫
ω

wyτ dt da dx = 0, ∀ ŷ0, ‖ŷ0‖L2(QA) ≤ 1, (2.1)

and ∫
U

∫
O
h0yλi dt da dx+

∫
U

∫
ω

wyλi dt da dx = ci, 1 ≤ i ≤M. (2.2)
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In order to transform equation (2.1), we introduce the classical adjoint state. More precisely, we
consider the solution q = q(t, a, x) of the linear problem

−∂q∂t −
∂q
∂a −4q + µq = βq(t, 0, x) + h0χO + wχω in Q,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

q = 0 on Σ1,
∂q
∂ν = 0 on Σ \ Σ1;

(2.3)

where χO and χω are the indicator functions for the respective open sets O and ω. There is a
unique solution in L2(Q) as a consequence of the fixed-point theorem for contracting mappings [3].
The so-called adjoint state q depends on the unknown function w, and its utility comes from the
following process.

First, we multiply both sides of the differential equation in (2.3) by yτ and integrate by parts
over Q. ∫

U

∫
O
h0yτ dt da dx+

∫
U

∫
ω

wyτ dt da dx =

∫ A

0

∫
Ω

q(0, a, x)ŷ0 da dx, (2.4)

∀ ŷ0 ∈ L2(QA), ‖ŷ0‖L2(QA) ≤ 1.

Thus, the condition (1.4) (or (2.1)) holds if and only if

q(0, a, x) = 0, a.e. (a, x) ∈ (0, A)× Ω. (2.5)

Next, multiplying both sides of the differential equation in (2.3) by yλi ∈ L2(Q), which is the
solution of (1.8), and integrating by parts over Q, we obtain∫

U

∫
O
h0yλi dt da dx+

∫
U

∫
ω

wyλi dt da dx =

∫
U

∫
Ω

qξ̂i dt da dx, 1 ≤ i ≤M. (2.6)

Thus, the condition (1.5) (or (2.2)) is equivalent to∫
Ω

qξ̂i dt da dx = ci, 1 ≤ i ≤M. (2.7)

Therefore, the above considerations show that the existence of the sentinel defined by (1.3)–(1.5)
holds if and only if the following null controllability problem with constraints on the state q holds:
Given h0 ∈ L2(U × O), find w of minimal norm in L2(U × ω) such that the pair (w, q) satisfies
(2.3), (2.5), and (2.7).

Actually, condition (1.5) (or (2.7) on the state q) is equivalent to a constraint on the control.
Indeed, let Yλ be the real vector subspace of L2(U×ω) defined in (1.9). Since Yλ is finite-dimensional,
there exists a unique w0 ∈ Yλ such that

ci −
∫
U

∫
O
h0yλidtdadx =

∫
U

∫
ω

w0yλidtdadx, 1 ≤ i ≤M.

Therefore, the condition (2.2) or (2.7) holds if and only if

w − w0 = v ∈ Yλ. (2.8)
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Consequently, replacing w by v + w0 in (2.3), then setting

h = h0χO + w0χω ∈ L2(Q), (2.9)

we finally deduce that we have the existence of the sentinel (1.3)− (1.5) if and only if, null control-
lability with constraint on the control (1.11)− (1.14) holds �

2.2 An adapted Carleman inequality

The observability inequality we are looking for is a consequence of Carleman’s inequality. We
consider an auxiliary function ψ ∈ C2(Ω) which satisfies the following conditions:

ψ(x) > 0 ∀ x ∈ Ω, ψ(x) = 0 ∀ x ∈ Γ, |∇ψ(x)| 6= 0 ∀ x ∈ Ω− ω0, (2.10)

where ω0 denotes any open set such that ω0 ⊂ ω (for example, ω0 can be some small enough open
ball). Such a function ψ exists according to A. Fursikov and O. Yu. Imanuvilov [7].

We define, for any positive parameter λ, the following weight functions:

ϕ(t, a, x) =
eλψ(x)

at(T − t)
, α(t, a, x) =

e2λ‖ψ‖∞ − eλψ(x)

at(T − t)
. (2.11)

Since ϕ does not vanish on Q, we set

θ =
esα

ϕ
√
ϕ

or
1

θ
= ϕ
√
ϕe−sα. (2.12)

Remark 2.1. 1
θ = ϕ

√
ϕe−sα is defined on Q = [0;T ]× [0;A]× Ω by

1
θ (t, a, x) =

{
ϕ

3
2 (t, a, x)e−sα(t,a,x) on ]0;T [×]0, A[×Ω,

0 on Q−
(
]0;T [×]0, A[×Ω

)
;

and we have the following limits :
lim

(t,a,x)→(0,0,x)

1
θ (t, a, x) = 0 = 1

θ(0,0,x) ; lim
(t,a,x)→(0,a,x)

1
θ (t, a, x) = 0 = 1

θ(0,a,x) ;

lim
(t,a,x)→(t,0,x)

1
θ (t, a, x) = 0 = 1

θ(t,0,x) ; lim
(t,a,x)→(T,0,x)

1
θ (t, a, x) = 0 = 1

θ(T,0,x) ;

lim
(t,a,x)→(0,A,x)

1
θ (t, a, x) = 0 = 1

θ(0,A,x) .

Thus 1
θ is continuous on Q and since Q is bounded in RN+2 then 1

θ is bounded.

We adopt the following notations :
L =

∂

∂t
+

∂

∂a
−∆ + µI,

L∗ = − ∂

∂t
− ∂

∂a
−∆ + µI,

V =

{
ρ ∈ C∞

(
Q
)
, ρ|Σ1

= 0, ∂ρ
∂ν |Σ\Σ1

= 0.

} (2.13)
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Lemma 2.2. Assume that (1.10) holds. Let θ be the function given by (2.12) and P be the operator
defined as in Theorem 1.5. Then there exists a positive constant C such that for any ρ ∈ V:∫

Q

1

θ2
|ρ|2dtdadx ≤ C

[∫
Q

|Lρ|2 dtdadx+

∫ T

0

∫ A

0

∫
ω

|ρ− Pρ|2dtdadx,

]
. (2.14)

The proof of this lemma requires what we call the global Carleman’s inequality.

Proposition 2.3. (Global Carleman’s inequality). Let ψ, ϕ and α be the functions defined respec-
tively as in (2.10)− (2.11). Then, there exists λ0 > 1 and s0 > 1 and there exists C > 0 such that,
for any λ ≥ λ0, for any s ≥ s0 and for any ρ ∈ V the following inequality holds:∫

Q

e−2sα

sϕ

(
|ρt + ρa|2 + |∆ρ|2

)
dtdadx+

∫
Q

sλ2ϕe−2sα|∇ρ|2dtdadx

+

∫
Q

s3λ4ϕ3e−2sα|ρ|2dtdadx

≤ C

[∫
Q

e−2sα |Lρ|2 dtdadx+

∫ T

0

∫ A

0

∫
ω

s3λ4ϕ3e−2sα|ρ|2dtdadx

]
.

(2.15)

Proof. We refer to [2] and [15]

According to the definition of ϕ and α given by (2.11), the function θ given by (2.12) is positive
and 1

θ = ϕ
√
ϕe−sα is bounded. So, replacing esα

ϕ
√
ϕ by θ in (2.15) the following inequality holds:

∫
Q

1

θ2
|ρ|2dtdadx ≤ C

[∫
Q

1

θ2ϕ3s3λ4
|Lρ|2 dtdadx+

∫ T

0

∫ A

0

∫
ω

1

θ2
|ρ|2dtdadx

]
. (2.16)

As a consequence of the boundedness of 1
θ and 1

ϕ3s3λ4 , we get the next observability inequality:∫
Q

1

θ2
|ρ|2dtdadx ≤ C

[∫
Q

|Lρ|2 dtdadx+

∫ T

0

∫ A

0

∫
ω

|ρ|2dtdadx

]
. (2.17)

Proof. of lemma 2.2.
The proof uses a well know compactness-uniqueness argument and the inequality (2.17). Indeed
suppose that (2.15) does not holds. then

∀j ∈ N∗,∃ρj ∈ V,
∫
Q

1
θ2 |ρj |2dtdadx = 1,∫

Q

|Lρj |2 dtdadx ≤ 1
j and

∫
U

∫
ω

|ρj − Pρj |2dtdadx ≤ 1
j .

(2.18)

The forthcoming proof consists of extracting some subsequence, still denoted (ρj)j such that the
following contradiction holds

lim
j→+∞

∫
Q

1

θ2
|ρj |2dtdadx = 0.

Denote by (h | g)L2(U×ω) the natural scalar product in the Hilbert space L2(U×ω). Let {k1, k2, ..., kM}
be some orthonormal basis of Yλ.

9
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Step1. We first show that for any i = 1, 2, . . . ,M , the numerical sequence
(
(ρj | ki)L2(U×ω)

)
j∈N∗

is bounded, or equivalently, that the sequence
(
‖Pρj‖2L2(U×ω)

)
j
is bounded.

Star with the norm inequality(∫
U

∫
ω

1
θ2 |Pρj |2dtdadx

) 1
2

≤
(∫

U

∫
ω

1
θ2 |ρj |2dtdadx

) 1
2

+

(∫
U

∫
ω

1
θ2 |ρj − Pρj |2dtdadx

) 1
2

.

Since 1
θ2 is bounded and by (2.18) it follows that there is some number γ

∀j ∈ N∗,
∫
U

∫
ω

1

θ2
|Pρj |2dtdadx ≤ γ. (2.19)

Since Yλ is finite dimensional, norms are equivalent. Particularly the mappings

k 7→
∫
U

∫
ω

|k|2dtdadx and k 7→
∫
U

∫
ω

1

θ2
|k|2dtdadx,

are equivalent norm on Yλ. There is then some number γ′

∀j ∈ N∗,
∫
U

∫
ω

|Pρj |2dtdadx ≤ γ′.

The relation (ρj − Pρj) ∈ Y ⊥λ , ∀j ∈ N∗ means the following

(ρj − Pρj | ki)L2(U×ω) = 0 ∀i, 1 ≤ i ≤M, ∀j ∈ N∗.

Thus

Pρj =

M∑
i=1

(Pρj | ki)L2(U×ω)ki =

M∑
i=1

(ρj | ki)L2(U×ω)ki, (2.20)

and from orthogonality∫
U

∫
ω

|Pρj |2 dtdadx =

M∑
i=1

∣∣(ρj | ki)L2(U×ω)

∣∣2 = ‖Pρj‖2L2(U×ω). (2.21)

Thus
‖Pρj‖2L2(U×ω) ≤ γ

′. (2.22)

Step 2. Since (Pρj)j∈N∗ is bounded and

‖ρj − Pρj‖2L2(U×ω) =

∫
U

∫
ω

|ρj − Pρj |2 dtdadx→ 0,

then the sequence (ρj)j∈N∗ is bounded. There is some weakly convergence subsequence still
denoted by (ρj)j∈N∗ such that :

ρj ⇀ g weakly in L2(U × ω). (2.23)

10
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Since sub-sequences have the same limit as convergence sequence

ρj − Pρj −→ 0 strongly in L2(U × ω). (2.24)

Next, we deduce from the compactness of P (because Yλ is finite dimensional) that there
exists ζ ∈ Yλ such that

Pρj −→ ζ stronly in L2(U × ω). (2.25)

We deduce from (2.24) and (2.25) that ρj −→ g = ζ strongly in L2(U × ω). Thanks to
the continuity of P , we have (2.24) and (2.25) that Pρj −→ Pg strongly in L2(U × ω).
Therefore, Pg = g and so g ∈ Yλ.

Step 3. In fact, we have g = 0. Indeed , from (2.18), we also have Lρj −→ 0 strongly in L2(Q).
Thus Lρj −→ 0 strongly in L2(U × ω). We conclude that Lρj ⇀ 0 weakly in D′(U × ω).
and so Lg = 0. The assumption (1.10) implies g = 0 on U × ω. Finally, ρj −→ 0 strongly in
L2(U × ω).

Step 4. Since ρj ∈ V, it follows from the observability inequality (2.17) that∫
Q

1

θ2
|ρj |2dtdadx ≤ C

[∫
Q

|Lρj |2 dtdadx+

∫ T

0

∫ A

0

∫
ω

|ρj |2dtdadx

]
.

Then, the conclusions in the third step, yield that
∫
Q

1
θ2 |ρj |2dtdadx −→ 0 when j −→ +∞.

The proof is now completed.

3 Null controllability with constraint on the control
The main tool used is the observability inequality (2.14), adapted to the constraint.

3.1 Existence of optimal control variable for null controllability
Consider now the following symmetric bilinear form :

∀ρ ∈ V, ∀ρ̂ ∈ V, a(ρ, ρ̂) =

∫
U

∫
Ω

LρLρ̂dtdadx+

∫
U

∫
ω

(ρ− Pρ) (ρ̂)− P ρ̂)) dtdadx. (3.1)

According to Lemma 2.2, this symmetric bilinear form is a scalar product on V. Let V be the
completion of V with respect to the related norm:

ρ 7→ ‖ρ‖V =
√
a(ρ, ρ). (3.2)

The closure of V is the Hilbert space V .

Remark 3.1. We have :

1. The norm ‖.‖V is related to the right side of inequality (2.14) while the left member of (2.14)
leads to the norm

∀ρ ∈ V, |ρ|θ =

(∫
Q

1

θ2
|ρ|2dtdadx

) 1
2

11
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2. The completion of V is the weighted Hilbert space usually denoted by L2
1
θ

.

3. The inequality (2.14) shows that
|ρ|θ ≤ C‖ρ‖V . (3.3)

Let θ be defined by (2.12) and h ∈ L2(Q) be such that θh ∈ L2(Q). Then, thanks to Cauchy-
Schwartz’s inequality and (2.14), the following linear form defined on V by :

ρ −→
∫
U

∫
Ω

hρddadx

is continuous. Therefore, Lax-Milgram’s Theorem [6], allows us to say that, for every function
h ∈ L2(Q) such that θh ∈ L2(Q), there exist one and only one solution ρθ in V of the variational
equation:

a(ρθ, ρ) =

∫
U

∫
Ω

hρddadx ∀ ρ ∈ V. (3.4)

In the following we assume that :

q(T ) ∈ L2([0, A], H−2(Ω)),
q(0) ∈ L2([0, T ], H−2(Ω)),
q(A) ∈ L2([0, T ], H−2(Ω)).

Proposition 3.2. Assume (1.10) holds. For h ∈ L2(Q) such that θh ∈ L2(Q), let ρθ be the unique
solution of 3.4,

vθ = − (ρθχω − Pρθ) , (3.5)

and
qθ = Lρθ. (3.6)

Then, the pair (vθ, qθ) is such that (1.11)− (1.13) holds.

Proof. We prove that (vθ, qθ) is a solution of (1.11) − (1.13). According to (3.5), we have ρθ ∈ V .
Consequently qθ ∈ L2(Q) and since Pρθ ∈ Yλ, the function vθ = − (ρθχω − Pρθ) ∈ Y ⊥λ . Next,
replacing Lρθ by qθ ∈ L2(Q) and − (ρθχω − Pρθ) by vθ in 3.4, we obtain∫

U

∫
Ω

qθLρdtdadx−
∫
U

∫
ω

vθ (ρ− Pρ) dtdadx =

∫
U

∫
Ω

hρdtdadx, ∀ρ ∈ V.

Since Pρ ∈ Yλ and vθ ∈ Yλ, this latter equality is reduced to∫
U

∫
Ω

qθLρdtdadx =

∫
U

∫
Ω

hρdtdadx+

∫
U

∫
ω

vθρdtdadx, ∀ρ ∈ V. (3.7)

In the duality frame D(Q), D′(Q) (3.7) means that

L∗qθ = h+ vθχω in D′(Q). (3.8)

Besides h+ vθχω ∈ L2(Q), then L∗qθ ∈ L2(Q).

Since qθ ∈ L2(Q) and ∆qθ ∈ H−1(U,L2(Ω)) and by the above Remark qθ |U×Γ∈ H−1(U,H−
1
2 (Γ)).

Similarly, since qθ ∈ L2(Q) and ∂qθ
∂t + ∂qθ

∂a ∈ L2(U,H−2(Ω)), qθ(0, a, x) ∈ L2([0, A], H−2(Ω)),

12
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qθ(T, a, x) ∈ L2([0, A], H−2(Ω)); qθ(t, 0, x) ∈ L2([0, T ], H−2(Ω)), qθ(t, 0, x) ∈ L2([0, T ], H−2(Ω)).
Taking into account (3.8), integrate by parts

∀ρ ∈ V,
∫
U

∫
Ω

qθLρdtdadx+

∫
U

〈
qθ,

∂ρ
∂ν

〉
H−

1
2 (Γ1),H

1
2 (Γ1)

dtda+

∫
U

〈
∂qθ
∂ν , ρ

〉
H−

1
2 (Γ\Γ1),H

1
2 (Γ\Γ1)

dtda

+

∫ T

0

[
〈qθ(t, 0, .), ρ(t, 0, .)〉H−2(Ω),H2(Ω) − 〈qθ(t, A, .), ρ(t, A, .)〉H−2(Ω),H2(Ω)

]
dt

+

∫ T

0

[
〈qθ(0, a, .), ρ(0, a, .)〉H−2(Ω),H2(Ω) − 〈qθ(T, a, .), ρ(T, a, .)〉H−2(Ω),H2(Ω)

]
da

=

∫
Ω

(h+ vθχω)ρdtdadx

By (3.7), since V ∈ V , it follows

∀ρ ∈ V,
∫
U

〈
qθ,

∂ρ
∂ν

〉
H−

1
2 (Γ1),H

1
2 (Γ1)

dtda+

∫
U

〈
∂qθ
∂ν , ρ

〉
H−

1
2 (Γ\Γ1),H

1
2 (Γ\Γ1)

dtda

+

∫ T

0

[
〈qθ(t, 0, .), ρ(t, 0, .)〉H−2(Ω),H2(Ω) − 〈qθ(t, A, .), ρ(t, A, .)〉H−2(Ω),H2(Ω)

]
dt

+

∫ T

0

[
〈qθ(0, a, .), ρ(0, a, .)〉H−2(Ω),H2(Ω) − 〈qθ(T, a, .), ρ(T, a, .)〉H−2(Ω),H2(Ω)

]
da

= 0

Then, successively, we get qθ = 0 on Σ1, ∂qθ∂ν = 0 on Σ \ Σ1; qθ(0, a, x) = 0 and qθ(T, a, x) = 0 in
QA; qθ(t, 0, x) = 0 and qθ(t, A, x) = 0 in QT .
Since qθ(t, 0, x) = 0 we have

L∗qθ = βq(t, 0, x) + h0χO + wχω

Hence the proof is completed.

Proposition 3.3. Under the assumptions of the Proposition 3.3, there exists a control variable v
such that the pair (v, q) satisfies (1.11)− (1.14). Moreover, we can get a unique control v̂θ such that
(1.15) holds.

Proof. We have proved in Proposition 3.1 that (vθ, qθ) satisfies (1.11)–(1.14). Consequently, the set
ε of control variables v ∈ L2(U × ω) such that (v, q(t, a, x, v)) verifies (1.11)–(1.14) is non-empty.
Moreover, the adapted observability inequality (2.14) shows that the choice of the scalar product
on V is not unique. Thus, proceeding as in Proposition 3.1, we can construct infinitely many
control functions v that belong to ε. It is then clear that ε is a non-empty closed convex subset of
L2(U ×ω). Therefore, there exists a unique control variable v̂θ of minimal norm in L2(U ×ω) such
that (v̂θ, q̂θ = q(t, a, x, v̂θ)) solves (1.11)–(1.14).

3.2 Proof of Theorem 1.5
In this subsection, we are concerned with the proof of Theorem 1.5. That is, the optimality system
for the control v̂θ such that the pair (v̂θ, q̂θ) satisfies (1.11) − (1.14). As a classical way to derive
this optimality system is the method of penalization due to J.L.Lions [11], the proof of theorem 1.2

13
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requires some preliminary results.

Let ε > 0. We define the functional

Jε(v, q) =
1

2
‖v‖2L2(U×ω) +

1

2ε
‖ − ∂q

∂t
− ∂q

∂a
−∆q + µq − βq(t, 0, x)− h− vχω‖2L2(Q), (3.9)

for any pair (v, q) such that
v ∈ Y ⊥λ , q ∈ L2(Q),

−∂q∂t −
∂q
∂a −∆q + µq − βq(t, 0, x) ∈ L2(Q),

q = 0 on Σ1,
∂q
∂ν = 0 on Σ \ Σ1,

q(T, a, x) = 0 in QA, q(t, A, x) = 0 in QT ,
q(0, a, x) = 0 in QA.

(3.10)

and we consider the minimization problem

inf {Jε(v, q) | (v, q) subject to (3.10)} (3.11)

Proposition 3.4. Under the assumptions of proposition 3.3 , the problem (3.11) has an optimal
solution. In other words, there exists a unique pair (vε, qε) such that

Jε(vε, qε) = inf {Jε(v, q) | (v, q) subject to (3.10)} (3.12)

Proof. Let (vn, qn) be a minimizing sequence satisfying (3.10). The sequence (Jε(vn, qn))n is
bounded from above

Jε(vn, qn) ≤ γ(ε), (3.13)

then {
‖vn‖L2(U×ω) ≤ C(ε),∥∥∥−∂qn∂t − ∂qn

∂a −∆qn + µqn − βqn(t, 0, x)− h− vnχω
∥∥∥
L2(Q)

≤
√
εC(ε). (3.14)

There is some subsequence of (vn)n, still denoted by (vn)n, such that

vn ⇀ vε weakly in L2(U × ω). (3.15)

As a consequence (3.10) the sequence (qn)n is bounded

‖qn‖L2(Q) ≤ C. (3.16)

There is some subsequence of (qn)n , still denoted by (qn)n such that

qn ⇀ qε weakly in L2(Q). (3.17)

Then
lim infJε(vn, qn) ≥ (Jε(vε, qε). (3.18)

We deduce that (vε, qε) is a unique optimal control, from the strict convexity of Jε

14
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Proposition 3.5. The assumptions are as in Proposition 3.3. Then, the pair (vε, qε) is optimal
solution of the problem (3.12) if and only if there exists a function ρε such that (vε, qε, ρε) ∈ L2(U ×
ω)× L2(Q)× V satisfies the following approximate optimality system:

−∂q∂t −
∂q
∂a −∆q + µq = βq(t, 0, x) + h+ vεχω + ερε in Q,

q = 0 on Σ1,
∂q
∂ν = 0 on Σ \ Σ1,
q(T, a, x) = 0 in QA,
q(t, A, x) = 0 in QT ;

(3.19)

q(0, a, x) = 0 in QA. (3.20)

∂ρε
∂t + ∂ρε

∂a −∆ρε + µρε = 0 in Q,
ρε = 0 on Σ1,
∂ρε
∂ν = 0 on Σ \ Σ1,

ρε(t, 0, x) =

∫ A

0

β(t, a, x)ρε(t, a, x)da in QT ;

(3.21)

vε = − (ρεχω − Pρε) ∈ Y ⊥λ (3.22)

Proof. Express the Euler-Lagrange optimality condition which characterize (vε, qε). For any (v, ϕ)
such that (3.10) the following holds∫

U

∫
ω

vεvdtdadx+

1
ε

∫
Q

(
−∂q
∂t
− ∂q

∂a
−∆q + µq − βq(t, 0, x)− h− vεχω

)
×
(
−∂ϕ∂t −

∂ϕ
∂a −∆ϕ+ µϕ− βϕ(t, 0, x)− vχω

)
.

(3.23)

Define the adjoint state

ρε = −1

ε

(
−∂qε
∂t
− ∂qε
∂a
−∆qε + µqε − βqε(t, 0, x)− h− vεχω

)
. (3.24)

Then (3.19) holds.

For any (v, ϕ) such that (3.10), (3.23) becomes∫
U

∫
ω

vεvdtdadx+

∫
Q

ρε

(
−∂ϕ
∂t
− ∂ϕ

∂a
−∆ϕ+ µϕ− βϕ(t, 0, x)− vχω

)
dtdadx = 0. (3.25)

Integrate by parts in (3.25). As a consequence the couple (vε, qε) is shown to satisfy

∂ρε
∂t + ∂ρε

∂a −∆ρε + µρε = 0 in Q,
ρε = 0 on Σ1,
∂ρε
∂ν = 0 on Σ \ Σ1,

ρε(t, 0, x) =

∫ A

0

β(t, a, x)ρε(t, a, x)da in QT ;

(3.26)

15
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and ∫
U

∫
ω

(vε + ρε) dtdadx = 0, ∀ v ∈ Y ⊥λ . (3.27)

Hence vε + ρεχω ∈ Y ⊥λ . Since vε ∈ Y ⊥λ then vε + ρεχω = P (vε + ρεχω) = Pρε and thus

vε = −(ρεχω − Pρε). (3.28)

Hence the assertion follows.

Remark 3.6. There is no available information concerning ρε(t, A, x) in QT , ρε(0, a, x) in QA,
ρε(T, a, x) in QA.

Proposition 3.7. Let (vε, qε, ρε) be defined as in Proposition 3.5. Then there exists a constant
C > 0 independent on ε such that

‖qε‖L2(Q) ≤ C, (3.29)
‖ρε− Pρε‖L2(U×ω) ≤ C, (3.30)

‖ρε‖L2(U×ω) ≤ C, (3.31)
‖ρε‖V ≤ C. (3.32)

Proof. From (3.14), we have∥∥∥∥−∂qε∂t − ∂qε
∂a
−∆qε + µqε − βqε(t, 0, x)− h− vεχω

∥∥∥∥
L2(Q)

≤ C
√
ε, (3.33)

‖vε‖L2(U×ω) ≤ C. (3.34)

Since qε verifies (3.10), we derive from (3.33), the relation (3.29). From (3.22) and (3.34), we obtain
(3.30). Then as Lρε = 0, using the definition of the norm on V given by (3.2), we have (3.32) in
one hand.

On the over hand, since ρε ∈ V, applying the observability inequality (2.17) to ρε, we have∥∥ 1
θρε
∥∥
L2(U×ω)

≤ C. Therefore, using (3.30) and the fact that 1
θ is in Linf(Q), we deduce that∥∥ 1

θPρε
∥∥
L2(U×ω)

≤ C. Since Pρε is in Yλ which is finite dimensional, we have ‖Pρε‖L2(U×ω) ≤ C.
Hence using again (3.30), we obtain estimate (3.31).

Proof. of Theorem 1.5 .

We proceed in three steps :

Step 1. We study the convergence of (vε, qε)ε.
According to (3.34) and (3.29) we can extract sub-sequences, still denoted (qε)ε and (vε)ε
such that

vε ⇀ v0 Weakly in L2(U × ω), (3.35)
qε ⇀ q0 Weakly in L2(Q). (3.36)

16
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And, as (vε) belong to Y ⊥λ which is a closed vector subspace of L2(U × ω), we have

v0 ∈ Y ⊥λ . (3.37)

From (3.36), we have qε ⇀ q0 Weakly in D′(Q). and by the weak continuity of the operator
L∗ in D′(Q) it follows L∗qε ⇀ L∗q0 Weakly in D′(Q). Moreover the traces functions are
continuous, then the pair (v0, q0) satisfies the system

−∂q0∂t −
∂q0
∂a −∆q0 + µq0 = βq0(t, 0, x) + h+ v0χω in Q,

q0 = 0 on Σ1,
∂q0
∂ν = 0 on Σ \ Σ1,
q0(T, a, x) = 0 in QA,
q0(t, A, x) = 0 in QT ,
q0(0, a, x) = 0 in QA.

(3.38)

q(0, a, x) = 0 in QA. (3.39)

Step 2. We prove that (v0, q0 = q(t, a, x, v0)) = (v̂θ, q̂θ = q(t, a, x, v̂θ)). From the expression of Jε
given by (3.9), we can write

1

2
‖vε‖2L2(U×ω) ≤ Jε(vε, qε).

Since (v̂θ, q̂θ) satisfies (1.11) − (1.13)(or equivalently verifies (3.10)), this latter inequality
becomes

1

2
‖vε‖2L2(U×ω) ≤ Jε(vε, qε) ≤

1

2
‖v̂θ‖2L2(U×ω). (3.40)

Then using (3.35) while passing to the limit in (3.40), we obtain

1

2
‖v0‖2L2(U×ω) ≤ lim inf

ε→0
Jε(vε, qε) ≤

1

2
‖v̂θ‖2L2(U×ω).

Consequently,
‖v0‖L2(U×ω) ≤ ‖v̂θ‖L2(U×ω),

and thus,
‖v0‖L2(U×ω) = ‖v̂θ‖L2(U×ω).

Hence, v0 = v̂θ and since (3.38) has a unique solution, it follows that q0 = q̂θ.

Step 3. According to the inequalities (3.31) and (3.32), we can extract a subsequence, still denoted
(ρε)ε such that

ρε ⇀ ρ̂θ Weakly in L2(U × ω), (3.41)
ρε ⇀ ρ̂θ Weakly in V. (3.42)

As P is a compact operator, we deduce from (3.41) that

Pρε ⇀ Pρ̂θ strongly in L2(U × ω). (3.43)

Therefore, combining (3.41) and (3.43), we get

vε = ρεχω − Pρ ⇀ v̂θ = ρ̂θχω − P ρ̂θ Weakly in L2(U × ω).

17



M. SOMA et al./ jmpao Vol. 3N◦1 (2024)

Thus, we have proved that there exists θ given by (2.12) such that for a given h ∈ L2(Q)
with θh ∈ L2(Q), the unique pair (v̂θ, q̂θ) satisfies (1.11)− (1.14) with v̂θ = ρ̂θχω −P ρ̂θ, and
where ρ̂θ is a solution of (1.17). Since the function h defined by (2.9) belongs to L2(Q) if
θh ∈ L2(Q), the proof of Theorem 1.2 is complete.

4 Expression of the sentinel with given sensitivity and iden-
tification of parameter λi

We can now give the expression of sentinel S defined by (1.3) − (1.6) and identify the parameters
λi

4.1 Expression of the sentinel with given sensitivity
We consider the results obtain in the previous section and we assume that h given by (2.9) and θ
given by (2.12) are such that θh ∈ L2(U × O). Let (ρ̂θ, v̂θ) be defined as in Theorem 1.5. Since
v̂θ = − (ρ̂θχω − P ρ̂θ) realizes the minimum in L2(U × ω) among all controls v such that the pair
(v, q) satisfies (1.11) − (1.14), using (2.8), we deduce that w = w0 + v̂θ = w0 − (ρ̂θχω − P ρ̂θ).
Consequently, replacing w by its expression in (1.3), the function S becomes:

S(λ, τ) =

∫
U

∫
O
h0y(λ, τ)dtdadx+

∫
U

∫
ω

(w0 − (ρ̂θχω − P ρ̂θ))y(λ, τ)dtdadx, (4.1)

and (w, S) is such that (1.4)− (1.6) hold.

4.2 Identification of parameter λi

y0 is the solution of the problem (1.1) when λ = 0 and τ = 0. Hence, from (4.1) we have

S(0, 0) =

∫
U

∫
O
h0y0dtdadx+

∫
U

∫
ω

(w0 − (ρ̂θχω − P ρ̂θ))y0dtdadx = 0.

Next, using (1.4), we obtain

S(λ, τ)− S(0, 0) '
M∑
i=1

λi
∂S

∂λi
(0, 0) for λi and τ small.

Since get at our disposal the observation yobs, we get

S(λ, τ)− S(0, 0) =

∫
U

∫
O
h0(yobs − y0)dtdadx+

∫
U

∫
ω

w(yobs − y0)dtdadx = 0.

Thus, we also have the following information:

M∑
i=1

λi
∂S

∂λi
(0, 0) '

∫
U

∫
O
h0(yobs − y0)dtdadx+

∫
U

∫
ω

w(yobs − y0)dtdadx,
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which, using (1.5)

M∑
i=1

λici '
∫
U

∫
O
h0(yobs − y0)dtdadx+

∫
U

∫
ω

w(yobs − y0)dtdadx.

Now, fixing i ∈ {1, ...,M} and choosing ci 6= 0 and cj = 0, for all j ∈ {1, ...,M} with j 6= i, we get
this estimate of the parameter λi

λi '
1

ci

∫
U

∫
O
h0(yobs − y0)dtdadx+

∫
U

∫
ω

w(yobs − y0)dtdadx.
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