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Abstract : In this study, we formulate and investigate a multi-objective control problem aimed at
eradicating fanatical insurgent armed groups, narcoterrorists and banditry in the Sahel. The aim is
to identify different control scenarios and integrate them into a model of the combined dynamics of
a fanatical insurgency and narcoterrorism. We analyze the effectiveness of these control strategies
using an optimality study based on Pontryagin’s maximum principle. Then, we perform numerical
simulations to assess the impact of these control measures on the evolution of the combined dyna-
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1 Introduction
The expansion of fanatical insurgent groups since the Libyan crisis of 2011, and the rise of

drug traffickers in the Sahel, have transformed this region into a zone of instability and the epicen-
ter of violence in Africa [2]. This deadly combination of fanaticism, terrorism and drug trafficking
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represents a complex and constantly evolving challenge that requires an integrated and strategic
approach. In this quest for security and stability in the region, mathematical modeling is emerging
as a powerful tool for analyzing, anticipating, and optimizing policies to control and counter violent
extremism and drug trafficking.

Optimal control in this context refers to a variety of options and strategies based on mathema-
tical models. These options include resource allocation for security operations, military operational
planning, regional coordination of actions, information management, border management, early de-
tection of threats, rehabilitation of radicalized individuals and prevention of recruitment, among
others. Mathematical modeling provides a framework for evaluating the interaction of these op-
tions and optimizing them. It is widely recognized that mathematical modeling plays an essential
role in understanding and solving complex problems, including studies of migration and crowd be-
havior [5], [22], [16], crime [10], [11], [19], [14], [12], [13], [21], [17], gang membership [26], [1], [6],
the dynamics of war [3], [9], [8], and research into the transmission dynamics of fanatical behavior [7].

This work is divided into several distinct sections, each exploring in detail different aspects of
our research. In section 2, we formulate a model of the combined dynamics of a fanatical insurgency
and narcoterrorism in the Sahel. In Section 3, we carry out a theoretical analysis of the existence,
uniqueness and positivity of solutions to the model’s equation. In section 4, we formulate our control
strategy, examining the principles and methodologies needed to create practical approaches to miti-
gating the risks associated with the convergence of fanatical armed insurgency and narcoterrorism.
In Section 5, we establish the existence and characterization of control optimality, providing a sound
theoretical basis for our approach. In Section 6, we perform numerical simulations to implement
our control strategies and evaluate their performance in realistic scenarios. Finally, in Section 7,
we present our conclusions, summarizing our main results and discussing the implications of this
research.

2 Model formulation

In this section we formulate the model of the combined dynamics of a fanatical insurgency and
narco terrorism in the Sahel. This part is essentially devoted to the description of the variables which
intervene in the model as well as the different parameters. To enhance clarity, the model divides
the total population (N) into two groups. The first group (D) consists of sub-populations at the
core of fanatical ideology, including vulnerable individuals (S), semi-fanatical followers (E), fully
committed fanatics (F ), and terrorists involved in extremist activities (T ). It is important to note
that the hierarchy within the fanatical subpopulation is defined by different levels of commitment,
with F representing the highest level. The second group (G) is composed of various subgroups,
including non-combatant civilians with an extremist ideology (C), homeland defense volunteers
(V ), defense and security forces (A), personnel disbarred from these forces (R), brigands (B), and
narcoterrorist cartels (K). The class I = A + V + B + T + K is made up of armed individuals
engaged in combat. The dynamics of these classes and their interactions are illustrated in Figure
2. All parameters of system (2.1) are assumed to be non-negative, and they are enumerated and
defined in Table 1.
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Figure 1 – Diagram of the combined dynamics of fanatical insurgency and narcoterrorism in the Sahel

The model equation is given by the following system :
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(2.1)

with the non-negative initial conditions given by :

C(0) > 0;S(0) ≥ 0;E(0) ≥ 0;F (0) ≥ 0;V (0) ≥ 0;A(0) > 0;R(0) ≥ 0;B(0) ≥ 0;P (0) ≥ 0;T (0) ≥ 0;K(0) ≥ 0;N(0) 6
Λ

µ
. (2.2)
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Table 1 – Parameters of the combined dynamic model (2.1) of fanatical insurgency and
narcoterrorism in the Sahel

Parameter Description
Λ the population renewal rate
γ1 the recovery rate or return to normal civilian life for individuals in the class S
γ2 the recovery rate or return to normal civilian life for individuals in the class E
γ3 the recovery rate or return to normal civilian life for individuals in the class F
γ4 the recovery rate or return to normal civilian life for individuals in the class A
γ5 the recovery rate or return to normal civilian life for individuals in the class P
γ6 the recovery rate or return to normal civilian life for individuals in the class R
γ7 the recovery rate or return to normal civilian life for individuals in the class B
γ8 the recovery rate or return to normal civilian life for individuals in the class T
γ9 the recovery rate or return to normal civilian life for individuals in the class V
γ10 the recovery rate or return to normal civilian life for individuals in the class K
π1 the ability of the fanatical D core to recruit and indoctrinate or attract the class C
π2 the ability of the fanatical D core to recruit and indoctrinate or attract the class V
π3 the ability of the fanatical D core to recruit and indoctrinate or attract the class A
π4 the ability of the fanatical D core to recruit and indoctrinate or attract the class R
π5 the ability of the fanatical D core to recruit and indoctrinate or attract the class B
π6 the ability of the fanatical D core to recruit and indoctrinate or attract the class P
π7 the ability of the fanatical D core to recruit and indoctrinate or attract the class K
θ1 the ability to recruit an individual from class P into class T
θ2 the ability to recruit an individual from class P into class B
θ3 the ability to recruit an individual from class P into class K
η the probability of dying in prison as a result of torture or detention conditions
ζ1 The fighting strength or firepower of individuals of classes B, T and K over individuals of class V
ζ2 The fighting strength or firepower of individuals of classes B, T and K on individuals of class A
ζ3 The fighting strength or firepower of individuals of classes A and V on individuals of class B
ζ4 The fighting strength or firepower of individuals of classes A and V on individuals of class T
ζ5 The fighting strength or firepower of individuals of classes A and V on individuals of class F
ζ6 The fighting strength or firepower of individuals of classes A and V on individuals of class K
µ natural mortality rate
ν1 the probability of recruitment into class A of individuals from class B following a malfunction
ν2 the write-off or dismissal rate in class A
ν3 the ability to recruit A individuals into the B class
τ1 the ability of individuals from classes A and V to arrest an individual from class F
τ2 the ability of individuals from classes A and V to arrest an individual from class B
τ3 the ability of individuals from classes A and V to arrest an individual from class T
τ4 the ability of individuals from classes A and V to arrest an individual from class K
β2 the strength of conversion from class S to class E
β3 the strength of conversion from class E to class F
β4 the strength of conversion from class F to class T
σ1 the rate of recruitment into the A class of individuals from the V class
σ2 the rate of recruitment into the A class of individuals from the C class
α1 the strength of determination to defend one’s homeland
α2 the power of attraction or recruitment into the B class of individuals from class C
α3 the power of attraction or recruitment into the K class of individuals from the C class
ω1 the power of attraction or recruitment into the T class of individuals from the B class
ω2 the power of attraction or recruitment into the T class of individuals from the A class
ω3 the power of attraction or recruitment into the T class of individuals from the R class
ω4 the power of attraction or recruitment into the B class of individuals from the R class
ω5 the power of attraction or recruitment into the K class of individuals from the R class
ω6 the power of attraction or recruitment into the K class of individuals from the A class
ω7 the power of attraction or recruitment into the K class of individuals from the B class
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3 Theoretical analysis of the model

To ensure the realism of system (2.1) in this study, it is essential to establish its well-posedness
and appropriate dimensionality. This ensures that all state variables remain positive over time. The
subsections of this section focus on proving the existence and uniqueness of solutions, as well as the
positivity of the state variables.

3.1 Existence and uniqueness of solution

Given that the system (2.1) is described by a system of non-linear differential equations of first
order, we can rewrite it as follows

X ′(t) = f(X(t)) (3.1)

with X(t) a column vector representing the state variables of system (2.1), and f : R11 → R11

denoting a locally Lipschitz function with respect to X. We establish the existence and uniqueness
of the maximum solution of the Cauchy problem associated with the differential equation (2.1) and
the initial condition (2.2).

3.2 Positivity of the solutions

Proposition 3.1. (Positivity) The positive orthant R11
≥0 remains positively invariant for system

(2.1), and the initial condition (2.2) guarantees the positivity of solutions for system (2.1) at any
time t > 0.

Proof : The proof is based on the application of the barrier theorem [4]. For further details,
see [25, 24, 27].

4 Formulation of a strategy to control fanatical insurrection
and narcoterrorism

Optimal control theory is applied to the model described by the equations (2.1) to deal with fa-
natical insurgency and brigandage. The introduction of six time-dependent control variables, namely
u1(t), u2(t), u3(t), u4(t), u5(t), and u6(t), each representing a specific strategy against radicaliza-
tion, violent extremism, and insecurity. Note that for i ranging from 1 to 6, the closer the ui(t)
control value is to 1, the more efficient it is.

(i) The control u1(t) is a preventive strategy against extremist indoctrination aimed at enhancing
social and economic resilience. It focuses on social cohesion, inclusion, and reducing socio-economic
inequalities through access to education and employment, as well as resource redistribution policies.
By encouraging community bonds, entrepreneurial initiatives, and collaboration with the private
sector, this approach seeks to reduce vulnerabilities and create an environment less conducive to
extremism.

(ii) The control u2(t) is a prevention strategy that complements existing efforts by emphasizing a
stronger state presence among vulnerable populations. It specifically targets neglected areas and
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aims to restore hope to young people. The aim is to give hope to those most vulnerable to radicali-
zation. The state’s offer must therefore be more attractive than that of insurgent fanatical groups.

(iii) The control u3(t) is a deradicalization strategy aimed at creating resilient and inclusive com-
munities that promote peace and peaceful coexistence. This multifaceted approach engages religious
and traditional leaders, raises awareness among young people in educational institutions, facilitates
reconciliation among citizens, and promotes interfaith and community dialogue. It strives to prevent
extremism and support the reintegration of disengaged individuals. By instilling values of tolerance
and citizenship from an early age, this strategy builds a strong foundation against radical influences.
The objective is to develop resilient and inclusive communities, fostering peace and peaceful coexis-
tence.

(iv) The control u4(t) refers to the strategy for fighting organized crime, banditry and corrup-
tion. It encompasses police operations, the strengthening of territorial networks and the training
of defense and security forces. By coordinating the efforts of law enforcement agencies, improving
infrastructures and enhancing the capabilities of security personnel, as well as ensuring better ter-
ritorial networking, this strategy aims to dismantle criminal networks, curb illicit activities and
enforce law and order within communities.

(v) The control u5(t) is a counterterrorism strategy. This strategy places particular emphasis on
intelligence development to enhance anticipation capabilities against terrorist attacks. It involves
detecting and neutralizing terrorists and their means. It includes monitoring suspicious activities,
information exchange between intelligence agencies, and community awareness of radicalization
signs. By targeting criminal networks and blocking terrorist financing, the strategy aims to dis-
mantle the support infrastructures of terrorism. Additionally, by addressing root causes such as
socio-economic inequalities and strengthening governance, it seeks to create a resilient environment
where terrorism cannot thrive. The ultimate goal is to strengthen security and protect communities
from the threat of terrorism.

(vi) The control u6(t) is a series of integrated measures designed to combat drug trafficking and the
financing of terrorism, while at the same time tackling drug consumption. It includes strengthening
regional cooperation between countries in the region, improving intelligence and security capabili-
ties, and implementing integrated approaches combining military and civilian efforts. It should be
noted that measures to combat banditry and terrorism are also effective against narcoterrorism.
The particularity of this strategy is that it specifically targets drug traffickers, who are organized
by units with greater expertise in this field.

5 Existence and characterization of control optimality

Let

ci(t) = 1− ui(t), ∀i ∈ {1, 2, 3, 4, 5, 6}. (5.1)

Consequently, the optimal control model with the above six time variables is given by the following
differential equations
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(5.2)

With non-negative initial conditions given by (2.2) and Λ∗ = Λ − (σ2 + µ)C. By applying the
barrier theorem [4], we show that all state variables of control system (5.2) remain positive for all
times t > 0 and this system can be written in matrix form as follows :

X ′(t) = g(t,X, c) (5.3)

where X is a column vector of state variables, c = (c1(t), c2(t), c3(t), c4(t), c5(t), c6(t)) satisfies (5.1),
and g : R×R11×R6 → R11 is a nonlinear function such that (5.2) can be satisfied. The introduction
of the six control variables aims to find the optimal solution to minimize the number of individuals
in the radical subpopulation or core of violent extremism and fanatical behavior, as well as brigands.
Therefore, the objective function for this control problem is given by :

J (u1, u2, u3, u4, u5, u6) = min
06u1,u2,u3,u4,u5,u661

∫ Tf

0

(
j(t) +

1

2
k(t)

)
dt (5.4)

where

j(t) = w1S(t) + w2E(t) + w3F (t) + w4B(t) + w5T (t) + w6P (t) + w12K(t)

k(t) =

[
w7u

2
1(t) + w8u

2
2(t) + w9u

2
3(t) + w10u

2
4(t) + w11u

2
5(t) + w13u

2
6(t)

]
with the constants wi, i = 1, 2, ..., 13 are positive weights needed to balance the corresponding terms

of the objective function. We choose quadratic costs on the orders, where
1

2
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2
1(t),

1

2
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2
2(t),

1

2
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2
3(t),

1

2
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2
4(t),

1

2
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2
5(t),

1

2
w13u

2
6(t) are the total cost of implementing the preventive mea-

sure and the police-military response to manage active cases of armed insurgency and narcoterro-
rism over the time interval [0, Tf ]. More precisely, we are looking for the optimum sixfold control
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where, U is the non-empty control set defined by
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) ∣∣∣∣ ui(t) is a piecewise continuous function on [0, Tf ]
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}
(5.6)

Thus, to determine the necessary conditions that the optimal control sixfold must satisfy, we use
Pontryagin’s maximum principle [23], which transforms the control problem (5.5) subject to model
(5.2) into a pointwise minimization problem of a Hamiltonian H. This Hamiltonian is given by
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+ c4θ2

B

P + I
+ c6θ3

K

P + I
+ γ5 + µ + η

)
P

]

+ λ11

[
c6

(
α3C

K

C + I
+ ω5R

K

R + I
+ ω6A

K

I
+ ω7B

K

I
+ θ3P

K

P + I

)
−
(
c1π7

D

N
+ τ4

A + V

I
+ γ10 + µ + ζ6

A + V

I

)
K

]

(5.7)

where λi, i = 1, 2, ..., 11, represent the adjoint variables associated with the state variables of the
model (5.2).
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We introduce the Lagrangian L associated with the problem (5.2), which corresponds to the Ha-
miltonian augmented by the penalty terms and is defined by

L = H− p11u1 − p12(1− u1)− p21u2 − p22(1− u2)− p31u3 − p32(1− u3)

−p41u4 − p42(1− u4)− p51u5 − p52(1− u5)− p61u6 − p62(1− u6)

where pij(t) ≥ 0 are penalty coefficients verifying :

{
p11u1 = p12(1− u1) = 0 ; p21u2 = p22(1− u2) = 0 ; p31u3 = p32(1− u3) = 0 ;
p41u4 = p42(1− u4) = 0 ; p51u5 = p52(1− u5) = 0 ; p61u6 − p62(1− u6) = 0 .

(5.8)

The standard existence result for minimizing control problem as appeared in [15] is adapted as
follows.

Theorem 5.1. (Existence and well-posedness of the control problem)
There exists a sixfold optimal control

(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
∈ U satisfying (5.5) subject to the control

system (5.2) with the initial conditions (2.2).

Proof : The existence of the optimal control is obtained thanks to a result of Fleming and
Rishel in [15]. Thanks to a result of Lukes [20] which ensures the existence of solutions for system
(5.2), the set of controls and corresponding solutions is non-empty. In addition the set of controls U
is a closed convex by definition and the vector field of system (5.2) is bounded. Also the integrand
of the objective function is clearly convex and g(t,X, c) in (5.3) is convex with respect to c. On the
other hand there exist a1, a2 > 0 and β > 1 such that

w1S + w2E + w3F + w4B + w5T + w6P + w12K +
1

2

[
w7u

2
1(t) + w8u

2
2(t) + w9u

2
3(t) + w10u

2
4(t) + w11u

2
5(t)) + w13u

2
6(t)

]

≥ a1

(
|u1|2 + |u2|2 + |u3|2 + |u4|2 + |u5|2 + |u6|2

)β
2 − a2

since the state variables are bounded.
Then, we deduce the existence of an optimal control (u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6) that minimizes the ob-

jective function J(u1, u2, u3, u4, u5, u6). �

For more details, see [18]. This article provides further explanations.

Theorem 5.2. Let
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
be a given optimal control, and let (C,R,A, V, S,E, F,B,K, T )

be the solution of the corresponding state system (5.2). Then there exist adjoint variables λi, i =

9
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1, ..., 11, satisfying :
dλ1

dt
= (λ1 − λ5)c1π1

D(N − C)

N2
+ (λ1 − λ4)α1

(T +B)I

(C + I)2
+ (λ1 − λ8)c4α2

BI

(C + I)2
+ (λ1 − λ3)σ2 + λ1µ

+(λ5 − λ2)c1π5
DR

N2
+ (λ5 − λ3)c1π3

DA

N2
+ (λ5 − λ4)c1π2

DV

N2
+ (λ5 − λ8)c1π4

DB

N2
+ (λ5 − λ10)c1π6

DP

N2

+(λ6 − λ5)c2β2
S(E + F + T )

N2
+ (λ7 − λ6)c3β3

E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2
+ (λ5 − λ11)c1π7

DK

N2

+(λ1 − λ11)c6α3
KI

(C + I)2
;

dλ2

dt
= (λ2 − λ1)γ6 + (λ2 − λ1)c1π1

DC

N2
+ (λ2 − λ1)c1π5

D(N −R)

N2
+ (λ2 − λ6)c5ω3

TI

(R+ I)2
+ λ2µ

+(λ2 − λ8)c4ω4
BI

(R+ I)2
+ (λ5 − λ3)c1π3

DA

N2
+ (λ5 − λ4)c1π2

DV

N2
+ (λ5 − λ8)c1π4

DB

N2

+(λ5 − λ10)c1π6
DP

N2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2
+ (λ7 − λ6)c3β3

E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2

+(λ5 − λ11)c1π7
DK

N2
+ (λ2 − λ11)c6α3

KI

(C + I)2
;

dλ3

dt
= (λ3 − λ1)γ4 + (λ5 − λ1)c1π1

DC

N2
+ (λ4 − λ1)α1

(T +B)C

(C + I)2
+ (λ8 − λ1)c4α2

BC

(C + I)2

+(λ3 − λ2)ν2 + (λ5 − λ2)c1π5
DR

N2
+ (λ9 − λ2)c5ω3

TR

(R+ I)2
+ (λ8 − λ2)c4ω4

BR

(R+ I)2
+ (λ3 − λ5)c1π3

D(N −A)

N2

+(λ3 − λ8)c4ν3
B(V + T +B +K)

I2
+ (λ3 − λ9)c5ω2

T (V + T +B +K)

I2
+ λ3ζ1

(T +B)(V + T +B +K)

I2
+ λ3µ

(λ5 − λ4)c1π2
DV

N2
− λ4ζ2

(T +B +K)V

I2
+ (λ5 − λ8)c1π4

DB

N2
+ (λ5 − λ10)c1π6

DP

N2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2

+(λ7 − λ6)c3β3
E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2
+ (λ7 − λ10)τ1

F (F + T +B +K)

(F + I)2
+ (λ8 − λ10)c4θ2

PB

(P + I)2

+λ7ζ3
F (F + T +B +K)

(F + I)2
+ (λ8 − λ10)τ2

B(T +B +K)

I2
+ (λ9 − λ8)c5ω1

TB

I2
+ λ8ζ4

B(T +B +K)

I2

+(λ9 − λ10)τ3
T (T +B +K)

I2
+ λ9ζ5

T (T +B +K)

I2
+ +(λ11 − λ1)c6α3

KC

(C + I)2
+ (λ11 − λ2)c6ω5

KR

(R+ I)2

+(λ3 − λ11)c6ω6
K(V + T +B +K)

I2
+ (λ5 − λ11)c1π7

DK

N2
+ (λ11 − λ10)c6θ3

PK

(P + I)2

+(λ11 − λ10)τ4
B(T +B +K)

I2
+ λ11ζ4

K(T +B +K)

I2
+ (λ9 − λ10)θ1

TP

(P + I)2
;

(5.9)

10



Mathieu Romaric POODA and al./ jmpao Vol. .2 N◦2 (2023)

dλ4

dt
= (λ3 − λ1)γ9 + (λ5 − λ1)c1π1

DC

N2
+ (λ4 − λ1)α1

(T +B)C

(C + I)2
+ (λ8 − λ1)c4α2

BC

(C + I)2
+ (λ4 − λ3)σ1

+(λ5 − λ2)c1π5
DR

N2
+ (λ9 − λ2)c5ω3

TR

(R+ I)2
+ (λ8 − λ2)c4ω4

BR

(R+ I)2
+ (λ5 − λ3)c1π3

DA

N2

+(λ8 − λ3)c4ν3
BA

I2
+ (λ9 − λ3)c5ω2

TA

I2
− λ3ζ1

(T +B +K)A

I2
+ λ4µ+ (λ4 − λ5)c1π2

D(N − V )

N2

+λ4ζ2
(T +B)(A+ T +B +K)

I2
+ (λ5 − λ8)c1π4

DB

N2
+ (λ5 − λ10)c1π6

DP

N2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2

+(λ7 − λ6)c3β3
E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2
+ (λ7 − λ10)τ1

F (F + T +B)

(F + I)2
+ (λ8 − λ10)c4θ2

PB

(P + I)2

+λ7ζ3
F (F + T +B)

(F + I)2
+ (λ8 − λ10)τ2

B(T +B +K)

I2
+ (λ9 − λ8)c5ω1

TB

I2
+ λ8ζ4

B(T +B +K)

I2

+(λ9 − λ10)θ1
TP

(P + I)2
+ (λ9 − λ10)τ3

T (T +B +K)

I2
+ λ9ζ5

T (T +B +K)

I2
+ +(λ11 − λ1)c6α3

KC

(C + I)2

+(λ11 − λ2)c6ω5
KR

(R+ I)2
+ (λ3 − λ11)c6ω6

K(V + T +B +K)

I2
+ (λ5 − λ11)c1π7

DK

N2
+ (λ11 − λ10)c6θ3

PK

(P + I)2

+(λ11 − λ10)τ4
B(T +B +K)

I2
+ λ11ζ4

K(T +B +K)

I2
;

dλ5

dt
= −w1 + (λ5 − λ1)γ1 + (λ1 − λ5)c1π1

C(N −D)

N2
+ (λ2 − λ5)c1π5

R(N −D)

N2
+ (λ3 − λ5)c1π3

A(N −D)

N2

+(λ4 − λ5)c1π2
V (N −D)

N2
+ (λ8 − λ5)c1π4

B(N −D)

N2
+ (λ10 − λ5)c1π6

P (N −D)

N2
+ λ5µ

+(λ5 − λ6)c2β2
(E + F + T )(N − S)

N2
+ (λ7 − λ6)c3β3

E(F + T )

N2
+ (λ9 − λ7)c5π4

TF

N2
+ (λ11 − λ5)c1π7

K(N −D)

N2
;

dλ6

dt
= −w2 + (λ6 − λ1)γ2 + (λ1 − λ5)c1π1

C(N −D)

N2
+ (λ2 − λ5)c1π5

R(N −D)

N2
+ (λ3 − λ5)c1π3

A(N −D)

N2

+(λ4 − λ5)c1π2
V (N −D)

N2
+ (λ8 − λ5)c1π4

B(N −D)

N2
+ (λ10 − λ5)c1π6

P (N −D)

N2
+ λ6µ+ (λ9 − λ7)c5π4

TF

N2

+(λ5 − λ6)c2β2

S

(
N − (E + F + T )

)
N2

+ (λ6 − λ7)c3β3
(F + T )(N − E)

N2
+ (λ11 − λ5)c1π7

K(N −D)

N2
;

dλ7

dt
= −w3 + (λ7 − λ1)γ2 + (λ1 − λ5)c1π1

C(N −D)

N2
+ (λ2 − λ5)c1π5

R(N −D)

N2
+ (λ3 − λ5)c1π3

A(N −D)

N2

+(λ4 − λ5)c1π2
V (N −D)

N2
+ (λ8 − λ5)c1π4

B(N −D)

N2
+ (λ10 − λ5)c1π6

P (N −D)

N2
+ λ7µ

+(λ5 − λ6)c2β2

S

(
N − (E + F + T )

)
N2

+ (λ6 − λ7)c3β3
(F + T )(N − E)

N2
+ (λ7 − λ9)c5β4

T (N − F )

N2

+(λ7 − λ10)τ1
(A+ V )I

(F + I)2
+ λ7ζ3

(A+ V )I

(F + I)2
+ (λ11 − λ5)c1π7

K(N −D)

N2
;

11
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dλ8

dt
= −w4 + (λ8 − λ1)γ7 + (λ5 − λ1)c1π1

DC

N2
+ (λ5 − λ2)c1π5

DR

N2
+ (λ9 − λ2)c5ω3

TR

(R+ I)2
+ (λ8 − λ3)ν1

+(λ5 − λ10)c1π6
DP

N2
+ (λ5 − λ3)c1π3

DA

N2
+ (λ5 − λ4)c1π2

DV

N2
+ (λ1 − λ4)α1

C(C +A+ V +K)

(C + I)2

+(λ1 − λ8)c4α2
C(C +A+ V + T +K)

(C + I)2
+ (λ2 − λ8)c4ω4

R(R+A+ V + T +K)

(R+ I)2
+ λ8µ+ (λ3 − λ9)c5ω2

TA

I2

+(λ3 − λ8)c4ν3
A(A+ V + T +K)

I2
+ λ3ζ1

A(A+ V )

I2
+ λ4ζ2

V (A+ V )

I2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2

+(λ7 − λ6)c3β3
E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2
+ (λ10 − λ7)τ1

F (A+ V )

(F + I)2
− λ7ζ3

F (A+ V )

(F + I)2

+(λ8 − λ10)τ2
(A+ V )(A+ V + T +K)

I2
+ λ8ζ4

(A+ V )(A+ V + T +K)

I2
+ (λ9 − λ10)θ1

TP

(P + I)2

+(λ10 − λ9)τ3
T (A+ V )

I2
− λ9ζ5

T (A+ V )

I2
+ (λ8 − λ5)c1π4

D(N −B)

N2
+ (λ8 − λ9)c5ω1

T (A+ V + T +K)

I2

+(λ8 − λ10)c4θ2
P (P +A+ V + T +K)

(P + I)2
+ (λ11 − λ2)c6ω5

KR

(R+ I)2
+ (λ3 − λ11)c6ω6

KA

I2

+(λ8 − λ11)c6ω7
K(A+ V + T +K)

I2
+ (λ11 − λ10)c6θ3

KP

(P + I)2
+ (λ10 − λ11)τ4

K(A+ V )

I2

+(λ11 − λ1)c6α3
KC

(C + I)2
− λ11ζ6

K(A+ V )

I2
+ (λ5 − λ11)c1π7

DK

N2
;

dλ9

dt
= −w5 + (λ9 − λ1)γ8 + (λ1 − λ5)c1π1

C(N −D)

N2
+ (λ1 − λ4)α1

C(C +A+ V )

(C + I)2
+ (λ8 − λ1)c4α2

BC

(C + I)2

+(λ2 − λ5)c1π5
R(N −D)

N2
+ (λ2 − λ9)c5ω3

R(R+A+ V +B +K)

(R+ I)2
+ (λ8 − λ2)c4ω4

BR

(R+ I)2

+(λ3 − λ5)c1π3
A(N −D)

N2
+ (λ8 − λ3)c4ν3

BA

I2
+ (λ3 − λ9)c5ω2

A(A+ V +B +K)

I2
+ λ3ζ1

A(A+ V )

I2

+(λ4 − λ5)c1π2
V (N −D)

N2
+ λ4ζ2

V (A+ V )

I2
+ (λ5 − λ6)c2β2

S

(
N − (E + F + T )

)
N2

+ (λ6 − λ7)c3β3

E

(
N − (F + T )

)
N2

+(λ10 − λ7)τ1
F (A+ V )

(F + I)2
+ (λ7 − λ10)c5β4

F (N − T )

N2
− λ7ζ3

F (A+ V )

(F + I)2
+ (λ8 − λ10)c4θ2

PB

(P + I)2

+(λ8 − λ5)c1π4
B(N −D)

N2
+ (λ8 − λ9)c5ω1

B(A+ V +B +K)

I2
− λ8ζ4

B(A+ V )

I2
+ (λ10 − λ8)τ2

B(A+ V )

I2

+(λ10 − λ9)c5θ1
P (P +A+ V +B +K)

(P + I)2
+ (λ9 − λ10)τ3

(A+ V )(A+ V +B +K)

I2
+ (λ10 − λ5)c1π6

P (N −B)

N2

+λ9µ+ λ9ζ5
(A+ V )(A+ V +B +K)

I2
+ (λ11 − λ2)c6ω5

KR

(R+ I)2
+ (λ11 − λ3)c6ω6

KA

I2
+ (λ11 − λ8)c6ω7

KB

I2

+(λ11 − λ10)c6θ3
KP

(P + I)2
+ (λ10 − λ11)τ4

K(A+ V )

I2
− λ11ζ6

K(A+ V )

I2
+ (λ11 − λ1)c6α3

KC

(C + I)2

+(λ5 − λ11)c1π7
DK

N2
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dλ10

dt
= −w6 + (λ10 − λ1)γ5 + (λ5 − λ1)c1π1

DC

N2
+ (λ5 − λ2)c1π5

DR

N2
+ (λ5 − λ3)c1π3

DA

N2
+ (λ5 − λ4)c1π2

DV

N2
+ (λ5 − λ8)c1π4

DB

N2

+(λ10 − λ5)c1π6
D(N − P )

N2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2
+ (λ7 − λ6)c3β3

E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2

+(λ10 − λ8)c4θ2
BI

(P + I)2
+ (λ10 − λ9)c5θ1

TI

(P + I)2
+ λ10µ+ λ10η + (λ5 − λ11)c1π7

DK

N2
+ (λ10 − λ11)c6θ3

KI

(P + I)2
;

dλ11

dt
= −w12 + (λ11 − λ1)γ10 + (λ5 − λ1)c1π1

DC

N2
+ (λ5 − λ2)c1π5

DR

N2
+ (λ9 − λ2)c5ω3

TR

(R+ I)2
+ (λ5 − λ10)c1π6

DP

N2

+(λ5 − λ3)c1π3
DA

N2
+ (λ5 − λ4)c1π2

DV

N2
+ (λ4 − λ1)α1

C(T +B)

(C + I)2
+ (λ8 − λ1)c4α2

BC

(C + I)2
+ (λ8 − λ2)c4ω4

BR

(R+ I)2

+λ11µ+ (λ9 − λ3)c5ω2
TA

I2
+ (λ8 − λ3)c4ν3

BA

I2
+ λ3ζ1

A(A+ V )

I2
+ λ4ζ2

V (A+ V )

I2
+ (λ6 − λ5)c2β2

S(E + F + T )

N2

+(λ7 − λ6)c3β3
E(F + T )

N2
+ (λ9 − λ7)c5β4

TF

N2
+ (λ10 − λ7)τ1

F (A+ V )

(F + I)2
− λ7ζ3

F (A+ V )

(F + I)2
+ (λ8 − λ10)τ2

B(A+ V )

I2

−λ8ζ4
B(A+ V )

I2
+ (λ9 − λ8)c5ω1

TB

I2
+ (λ9 − λ10)θ1

TP

(P + I)2
+ (λ10 − λ9)τ3

T (A+ V )

I2
− λ9ζ5

T (A+ V )

I2
+ (λ5 − λ8)c1π4

DB

N2

+(λ8 − λ10)c4θ2
PB

(P + I)2
+ (λ1 − λ11)c6α3

C(C +A+ V + T +B)

(C + I)2
+ (λ2 − λ11)c6ω5

R(R+A+ V + T +B)

(R+ I)2

+(λ3 − λ11)c6ω6
A(A+ V + T +B)

I2
+ (λ11 − λ5)c1π7

D(N −K)

N2
+ (λ8 − λ11)c6ω7

B(A+ V + T +B)

I2

+(λ11 − λ10)τ4
(A+ V )(A+ V + T +B)

I2
+ (λ10 − λ11)c6θ3

P (P +A+ V + T +B)

(P + I)2
+ λ11ζ6

(A+ V )(A+ V + T +B)

I2
;

provided with transversality condition

λi(Tf ) = 0, i = 1, 2, ..., 11.
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The optimal controls
(
u∗1, u

∗
2, u
∗
3, u
∗
4, u
∗
5, u
∗
6

)
are then represented as follows :



u∗
1 = max

{
0,min

{
1,

(
(λ5−λ1)π1C+(λ5−λ2)π5R+(λ5−λ3)π3A+(λ5−λ4)π2V+(λ5−λ8)π4B+(λ5−λ10)π6P+(λ5−λ11)π7K

)
D

w7N

}}

u∗
2 = max

{
0,min

{
1,

(λ5 − λ6)β2S(E + F + T )

w8N

}}

u∗
3 = max

{
0,min

{
1,

(λ6 − λ7)β3E(F + T )

w9N

}}

u∗
4 = max

{
0,min

{
1,

(λ8 − λ1)α2
BC

C + I
+ (λ8 − λ2)ω4

BR

R + I
+ (λ8 − λ3)ν3

BA

I
+ (λ8 − λ10)θ2

BP

P + I

w10

}}

u∗
5 = max

{
0,min

{
1,

(λ9 − λ2)ω3
TR

R + I
+ (λ9 − λ3)ω2

TA

I
+ (λ9 − λ7)β4

TF

N
+ (λ9 − λ8)ω1

TB

I
+ (λ9 − λ10)θ1

TP

P + I

w11

}}

u∗
6 = max

{
0,min

{
1,

(λ11 − λ1)α3
KC

C + I
+ (λ11 − λ2)ω5

KR

R + I
+ (λ11 − λ3)ω6

KA

I
+ (λ11 − λ8)ω7

KB

I
+ (λ11 − λ10)θ3

KP

P + I

w13

}}
.

(5.10)

Proof : As mentioned earlier, the characterization of the optimal solution is obtained by ap-
plying the Pontryagin’s maximum principle. The system of ordinary differential equations (5.9)
governing the adjoint variables is derived by differentiating the Hamiltonian.

To obtain the optimal control formulation expressed by (5.10), we solve the constraint equation
obtained by taking the derivative of the Lagrangian L with respect to

(
u1, u2, u3, u4, u5, u6

)
.

∂L
∂u1

= w7u1 −

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R + (λ5 − λ3)π3A + (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

N

−p11 + p12 = 0 ;

∂L
∂u2

= w8u2 −
(λ5 − λ6)β2S(E + F + T )

N
− p21 + p22 = 0 ;

∂L
∂u3

= w9u3 −
(λ6 − λ7)β3E(F + T )

N
− p31 + p32 = 0 ;

∂L
∂u4

= w10u4 −
[
(λ8 − λ1)α2

BC

C + I
+ (λ8 − λ2)ω4

BR

R + I
+ (λ8 − λ3)ν3

BA

I
+ (λ8 − λ10)θ2

BP

P + I

]
− p41 + p42 = 0 ;

∂L
∂u5

= w11u5 −
[
(λ9 − λ2)ω3

TR

R + I
+ (λ9 − λ3)ω2

TA

I
+ (λ9 − λ7)β4

TF

N
+ (λ9 − λ8)ω1

TB

I
+ (λ9 − λ10)θ1

TP

P + I

]
− p51 + p52 = 0 ;

∂L
∂u6

= w13u6 −
[
(λ11 − λ1)α3

KC

C + I
+ (λ11 − λ2)ω5

KR

R + I
+ (λ11 − λ3)ω6

KA

I
+ (λ11 − λ8)ω7

KB

I
+ (λ11 − λ10)θ3

KP

P + I

]
− p61 + p62
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After solving, we obtain

u∗1 =

(
(λ5−λ1)π1C+(λ5−λ2)π5R+(λ5−λ3)π3A+(λ5−λ4)π2V+(λ5−λ8)π4B+(λ5−λ10)π6P+(λ5−λ11)π7K

)
D

w7N
+

1

w7

(
p11 − p12

)

u∗2 =
(λ5 − λ6)β2S(E + F + T )

w8N
+

1

w8

(
p21 − p22

)

u∗3 =
(λ6 − λ7)β3E(F + T )

w9N
+

1

w9

(
p31 − p32

)

u∗4 =

(λ8 − λ1)α2
BC

C + I
+ (λ8 − λ2)ω4

BR

R+ I
+ (λ8 − λ3)ν3

BA

I
+ (λ8 − λ10)θ2

BP

P + I

w10
+

1

w10

(
p41 − p42

)

u∗5 =

(λ9 − λ2)ω3
TR

R+ I
+ (λ9 − λ3)ω2

TA

I
+ (λ9 − λ7)β4

TF

N
+ (λ9 − λ8)ω1

TB

I
+ (λ9 − λ10)θ1

TP

P + I

w11
+

1

w11

(
p51 − p52

)

u∗6 =

(λ11 − λ1)α3
KC

C + I
+ (λ11 − λ2)ω5

KR

R+ I
+ (λ11 − λ3)ω6

KA

I
+ (λ11 − λ8)ω7

KB

I
+ (λ11 − λ10)θ3

KP

P + I

w13
+

1

w13

(
p61 − p62

)

To obtain the explicit formula for optimal control without p11, p12, p21, p22, p31, p32, p41, p42, p51, p52, p61,
and p62, we use standard techniques. Three specific cases are examined.

(∗) Let <1 =

{
t ∈ R+/0 < u∗1 < 1

}
.

For all t ∈ <1, we have p11(t)u∗1(t) = p12(t)(1− u∗1(t)) = 0 leads to p11(t) = p12(t) = 0.

So the optimal control is :

u∗1 =

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R+ (λ5 − λ3)π3A+ (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

w7N
.

(∗∗) Let <2 =

{
t ∈ R+/u∗1 = 1

}
.

For all t ∈ <2, we have p11(t)u∗1(t) = p12(t)(1− u∗1(t)) = 0 leads to p11(t) = 0.

Then the optimal control is :

u∗1 =

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R+ (λ5 − λ3)π3A+ (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

w7N
−
p12

w7
= 1.
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Thus

u∗1 =

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R+ (λ5 − λ3)π3A+ (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

w7N
≥ 1,

since
p12
w7
≥ 0 given that p12(t) ≥ 0 and w7 > 0.

(∗ ∗ ∗) Let <3 =

{
t ∈ R+/u∗1 = 0

}
.

For all t ∈ <3, we have p11(t)u∗1(t) = p12(t)(1− u∗1(t)) = 0 leads to p12(t) = 0.

Then the optimal control is :

u
∗
1 =

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R + (λ5 − λ3)π3A + (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

w7N
+
p11

w7

= 0.

Thus

u∗1 =

(
(λ5 − λ1)π1C + (λ5 − λ2)π5R+ (λ5 − λ3)π3A+ (λ5 − λ4)π2V + (λ5 − λ8)π4B + (λ5 − λ10)π6P + (λ5 − λ11)π7K

)
D

w7N
≤ 0

since
p11
w7
≥ 0 given that p11(t) ≥ 0 and w7 > 0.

From (∗), (∗∗) and (∗ ∗ ∗), we conclude that the optimal control u∗1 is rewritten as follows

u∗1 =

 0 if r∗1 ≤ 0
r∗1 if 0 < r∗1 < 1
1 if r∗1 ≥ 1

Analogously, we show that :

u∗2 =

 0 if r∗2 ≤ 0
r∗2 if 0 < r∗2 < 1
1 if r∗2 ≥ 1

u∗3 =

 0 if r∗3 ≤ 0
r∗3 if 0 < r∗3 < 1
1 if r∗3 ≥ 1

u∗4 =

 0 if r∗4 ≤ 0
r∗4 if 0 < r∗1 < 1
1 if r∗4 ≥ 1

u∗5 =

 0 if r∗5 ≤ 0
r∗5 if 0 < r∗5 < 1
1 if r∗5 ≥ 1

u∗6 =

 0 if r∗6 ≤ 0
r∗6 if 0 < r∗6 < 1
1 if r∗6 ≥ 1
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where,



r∗2 =
(λ5 − λ6)β2S(E + F + T )

w8N

r∗3 =
(λ6 − λ7)β3E(F + T )

w9N

r∗4 =

(λ8 − λ1)α2
BC

C + I
+ (λ8 − λ2)ω4

BR

R+ I
+ (λ8 − λ3)ν3

BA

I
+ (λ8 − λ10)θ2

BP

P + I

w10

r∗5 =

(λ9 − λ2)ω3
TR

R+ I
+ (λ9 − λ3)ω2

TA

I
+ (λ9 − λ7)β4

TF

N
+ (λ9 − λ8)ω1

TB

I
+ (λ9 − λ10)θ1

TP

P + I

w11

r∗6 =

(λ11 − λ1)α3
KC

C + I
+ (λ11 − λ2)ω5

KR

R+ I
+ (λ11 − λ3)ω6

KA

I
+ (λ11 − λ8)ω7

KB

I
+ (λ11 − λ10)θ3

KP

P + I

w13

This ends the proof. �

6 Numerical simulations of the control system

To illustrate the impact of counterradicalization and counterterrorism strategies on the dynamic
evolution of the core sub-population of violent extremists, we have carried out a detailed numerical
simulation. For ease of reading, we present the evolution of the different population classes (S, E,
F, B, K, T) without control, represented in red, and with control, represented in blue. We highlight
the scenario in which the different control strategies prove most effective. The results, obtained
with a MATLAB implementation using an explicit Euler scheme, are based on the parameter
values described in Table 2 and the following initial conditions : C(0)=150000, R(0)=8, A(0)=150,
V(0)=150, S(0)=25000, E(0)=1500, F(0)=400, B(0)=100, T(0)=150, K(0)=150, P(0)=20.
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Table 2 – Parameters values estimated

Parameters Threat Persistence Values
Λ 22500
γ1 0.00046
γ2 0.000028
γ3 0.000000111
γ4 0.12
γ5 0.0000016
γ6 0.0026
γ7 0.002
γ8 0.0000011
γ9 0.011
γ10 0.000011
π1 1
π2 0.00534
π3 0.02
π4 0.0014
π5 0.04
π6 0.5
π7 0.1
θ1 0.0032
θ2 0.0032
θ3 0.00032
η 0.15
ζ1 0.17
ζ2 0.17
ζ3 0.07
ζ4 0.2
ζ5 0.1
ζ6 0.24
µ 0.08
ν1 0.002
ν2 0.002
ν3 0.01
τ1 0.00002
τ2 0.045
τ3 0.00045
τ4 0.00045
β2 0.75
β3 0.82
β4 0.98
σ1 0.11
σ2 0.01
α1 0.02
α2 4
α3 2
ω1 0.29
ω2 0.4
ω3 1.1
ω4 1
ω5 1
ω6 0.42
ω7 0.002

19



Mathieu Romaric POODA and al./ jmpao Vol. .2 N◦2 (2023)

0 20 40 60 80 100 120

time (year)

0

1

2

3

4

5

6

7

8

e
ff

e
c
ti
f

10
4 Evolution of the subpopulation of the class S

S without control

S with control

0 20 40 60 80 100 120

time (year)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
ff

e
c
ti
f

10
4 Evolution of the subpopulation of the class E

E without control

E with control

0 20 40 60 80 100 120

time (year)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

e
ff

e
c
ti
f

Evolution of the subpopulation of the class F

F without control

F with control

0 20 40 60 80 100 120

time (year)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
ff

e
c
ti
f

10
5 Evolution of the subpopulation of the class B

B without control

B with control

0 20 40 60 80 100 120

time (year)

0

1000

2000

3000

4000

5000

6000

7000

8000

e
ff
e

c
ti
f

Evolution of the subpopulation of the class K

K without control

K with control

0 20 40 60 80 100 120

time (year)

0

2

4

6

8

10

12

14

16

18

e
ff
e

c
ti
f

10
4 Evolution of the subpopulation of the class T

T without control

T with control

Figure 2 – Dynamics of individuals in the S,E, F,B,K, and T classes without control
and with control u1 = u2 = u3 = u4 = u5 = u6 = 1.
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An analysis of figure 2 reveals a significant trend : a marked reduction in terrorist threats,
fanatical ideology, banditry and drug trafficking. These observations underline the potential effec-
tiveness of the various strategies to combat violent extremism and narcoterrorism when properly
implemented. This reduction in threats suggests that concerted efforts, both preventive and repres-
sive, can lead to a rapid stabilization of the security climate in the Sahel region.

A closer look at the trends observed in Figure 2 leads to several important conclusions. Firstly,
the decline in terrorist threats and fanatical ideology indicates the effectiveness of preventive mea-
sures such as awareness campaigns, the promotion of social cohesion and the fight against radi-
calization. Similarly, the decline in banditry and drug trafficking suggests the positive impact of
security operations aimed at disrupting criminal networks and reducing their influence in the region.

These results underline the importance of an integrated and equilibrium approach in the fight
against fanatical insurgency and narcoterrorism in the Sahel. They highlight the need for close
coordination between preventive and repressive measures, as well as the relevance of a multidimen-
sional approach to tackling the root causes of these threats. They also underline the importance of
regional and international cooperation in designing and implementing effective control strategies.

7 Conclusion

This study of optimal multi-objective control of fanatical insurgency and narcoterrorism in the
Sahel highlights the crucial importance of preventive measures and effective security operations in
achieving overall stability. It underscores the need for equilibrium between preventive and inter-
ventionist approaches and calls for an integrated approach to regional security policy. The findings
indicate that a synergistic combination of preventive measures focused on radicalization preven-
tion and social cohesion, coupled with sound security strategies, is essential to effectively combat
fanatical insurgency, terrorism, brigandage, and narcoterrorism. Therefore, a balanced and integra-
ted approach between preventive and repressive measures is necessary to guarantee security and
promote stability in the region.

Research prospects could include an in-depth study of the organization and effectiveness of de-
fense systems in the Sahel, as well as an analysis of administrative and security interlocking patterns
to determine the most effective configurations for ensuring security and stability. In addition, the
study of conflict dynamics in the region could be undertaken to understand the underlying causes of
tension and violence, identifying key actors and their motivations. At the same time, research could
be conducted on peace-building strategies to prevent conflict and promote reconciliation, while bor-
der and mobility management could be studied to better understand the challenges associated with
the movement of people, goods, and weapons across the porous borders of the Sahel.
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