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1 Introduction

In a natural ecosystem, the investigations on the dynamic properties of the population dynamics
may neglect the possible effects induced by time delay. The important effects of time delays in
dynamical systems have been brought to light in [11, 24]. Time delay is also very important for
issues that affect the survival of humans around the world. For example, the time delay is a key
factor in studying the dynamic mechanism of COVID-19 transmission [14, 19]. The authors of [22]
considered and analyzed a novel stage-structured single population model with state-dependent
maturity delay. In [12], S. Ma and al. investigated a logistic population model with a maturation
delay stage for adults. Moreover, Magpantay and Kosovalić considered in [13], an age-structured
population model with distinct immature and adult stages, wherein the populations at each stage
consume different limited food sources. Properties of solutions to this model are derived and the
dynamics are compared to the corresponding constant delay case when state-dependence is ignored.
A new age-structured model for a closed population with space-limited recruitment is proposed by

1corresponding author amidoutraore70@yahoo.fr
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Angulo and al in [1]. This problem incorporates a time delay in the settlement process representing,
for a marine population of invertebrates, the pelagic larval phase previous to the sessile stage.
Recently, a novel method for basic reproduction ratio of a size-structured population model with
delay by Kumar and al in [10].

In the literature, there are full practical processes that might be modelled by distributed delay
systems,which present a wide range of applications in various fields. In the recent past (last four
decades), many researchers have developed mathematical tools in order to establish polynomial or
exponential decays of these systems. For a list of early works, see [18] and for some other relevant
results, we refer readers to [9, 20] and the references therein.

In this paper, we consider the following population dynamics model with delay term

yt(t, a, x) + ya(t, a, x)−∆y(t, a, x) + µ(a)y(t, a, x) = 0 in (0,+∞)× (0, A)× Ω,

y(t, a, σ) = 0 on (0,+∞)× (0, A)× ΓD,

yν(t, a, σ) = u(t, a, σ) on (0,+∞)× (0, A)× ΓN ,

y(t, a, x) = y0(t, a, x) on (−τ, 0)× (0, A)× Ω,

y(t, 0, x) =

∫ A

0

β(a)y(t− τ, a, x)da on (0,+∞)× Ω,

(1.1)

where Ω is a bounded open subset of RN , N ≥ 1 with a smooth boundary Γ such that Γ = ΓD∪ΓN
and ΓD ∩ ΓN = ∅; τ > 0 denotes the time delay. Here y(t, a, x) is the distribution of individuals
of age a at time t and location x ∈ Ω. The constant A is the maximum life expectancy, ∆ the
Laplacian with respect to the spatial variable and σ ∈ Γ; and u(t, a, σ) the control function. The
natural fertility and the natural death rate of individuals are respectively denoted by β and µ. We
assume that the fertility and the natural death rate satisfy the demographic properties:

(H1)


µ(a) > 0 a.e a ∈ (0, A),∫ A

0

µ(s)ds = +∞,

and

(H2)

 β(a) ≥ 0 for every a ∈ (0, A),

β ∈ L2(0, A).

Let us introduce the so-called net reproduction rate R0 :=
∫ A

0
β(a)exp

(
−
∫ a

0
µ(s)ds

)
da. It is well

known that for τ = 0 and u = 0 ( see for intance [2]), if R < 1 then

lim
T→+∞

‖y(T, ., .)‖L2((0,A)×Ω) = 0

while if R > 1 then
lim

T→+∞
‖y(T, ., .)‖L2((0,A)×Ω) = +∞.
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In what follows, we consider a feadback control. More precisely, we take u = −ηy, η > 0 and we
prove that one gets various stablity result even if R > 1.
In this recent work, D. Yan [23] investigated the long time behavior for a size-dependent population
system with diffusion and Riker type birth function. Some dynamical properties of the considered
system is obtained by using C0-semigroup theory and spectral analysis arguments. Some sufficient
conditions are obtained respectively for asymptotical stability, asynchronous exponential growth at
the null equilibrium as well as Hopf bifurcation occurring at the positive steady state of the model.
In our work, this method is not used.

The main novelties brought in by our paper are enumerated below.

• The first novelty in this work is the introduction of delay term in the model structured by time,
age and space with a boundary control on a part of the domain.

• Here, we use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [3, 7, 20, 21]. With
this technic, we show that the C0−semigroup of the system (1.1) is strongly stable on the space
L2
(
(0, A)× Ω

)
.

• Exponential stability of the problem is proved using the frequency domain approach introduce in
[8].

The next sections are organized as follows: in Section 2, the system (1.1) is written in a
semigroup approach and we obtain the well posedness result. The Section 3 deals with the strong
stability of the problem. Then, the uniform stability is established in Section 4.

2 Well posedness

This section is devoted to the study of the well posedness of the problem (1.1) using the semigroup
theory combined with the Banach fixed point theorem.

Let us denote by µ0 a positive constant which will be fixed later. We make the following standard
change ŷ = e−µ0ty. Then, it follows that ŷ solves the following system:

ŷt(t, a, x) + ŷa(t, a, x)−∆ŷ(t, a, x) +
(
µ(a) + µ0

)
ŷ(t, a, x) = 0 in (0,+∞)× (0, A)× Ω,

ŷ(t, a, σ) = 0 on (0,+∞)× (0, A)× ΓD,

ŷν(t, a, σ) + ηŷ(t, a, σ) = 0 on (0,+∞)× (0, A)× ΓN ,

ŷ(t, a, x) = ŷ0(t, a, x) on (−τ, 0)× (0, A)× Ω,

ŷ(t, 0, x) =

∫ A

0

β(a)ŷ(t− τ, a, x)da on (0,+∞)× Ω,

(2.1)
where ŷ0(t, a, x) = e−µ0ty0(t, a, x) is the initial density of the population.

The existence of solution of problem (1.1) is now reduced to the well posedness of the problem
(2.1).

Let us set

p(t, a, x, ρ) = ŷ(t− ρτ, a, x), (t, a, x, ρ) ∈ (0,+∞)× (0, A)× Ω× (0, 1). (2.2)

22
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Then, we obtain

pt(t, a, x, ρ) + 1
τ pρ(t, a, x, ρ) = 0 in (0,+∞)× (0, A)× Ω× (0, 1),

p(0, a, x, ρ) = ŷ0(−ρτ, a, x) on (0, A)× Ω× (0, 1),

p(t, a, x, 0) = ŷ(t, a, x) on (0,+∞)× (0, A)× Ω,

p(t, a, x, 1) = ŷ(t− τ, a, x) on (0,+∞)× (0, A)× Ω.

The problem (2.1) is now equivalent to the following

ŷt(t, a, x) + ŷa(t, a, x)−∆ŷ(t, a, x) +
(
µ(a) + µ0

)
ŷ(t, a, x) = 0 in (0,+∞)× (0, A)× Ω,

ŷ(t, a, σ) = 0 on (0,+∞)× (0, A)× ΓD,

ŷν(t, a, σ) + ηŷ(t, a, σ) = 0 on (0,+∞)× (0, A)× ΓN ,

ŷ(t, a, x) = ŷ0(t, a, x) on (−τ, 0)× (0, A)× Ω,

ŷ(t, 0, x) =

∫ A

0

β(a)p(t, a, x, 1)da on (0,+∞)× Ω,

(2.3)
and 

pt(t, a, x, ρ) + 1
τ pρ(t, a, x, ρ) = 0 in (0,+∞)× (0, A)× Ω× (0, 1),

p(0, a, x, ρ) = ŷ0(−ρτ, a, x) on (0, A)× Ω× (0, 1),

p(t, a, x, 0) = ŷ(t, a, x) on (0,+∞)× (0, A)× Ω,

p(t, a, x, 1) = ŷ(t− τ, a, x) on (0,+∞)× (0, A)× Ω.

(2.4)

If we denote by

X =

(
ŷ
p

)
,

one has from (2.3) and (2.4)

Xt =

(
ŷt
pt

)
=

(
−ŷa + ∆ŷ −

(
µ+ µ0

)
ŷ

−1
τ pρ

)
= AX,

with the domain

D(A) =

{(
ŷ
p

) ∣∣∣∣ ŷ ∈ L2

(
(0, A);H2(Ω) ∩ V

)
∩H1

(
(0, A);L2(Ω)

)
; p ∈ H1

(
(0, 1);L2(Ω)

)
;

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da; p(a, x, 0) = ŷ(a, x)

}
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and

V =

{
ŷ ∈ L2

(
(0, A);H1(Ω)

)∣∣∣∣ ŷ(a, σ) = 0 on (0, A)×ΓD and ŷν(a, σ) = −ηŷ(a, σ) on (0, A)×ΓN

}
.

Denote by H the Hilbert space as below

H = L2
(
(0, A)× Ω

)
× L2

(
(0, A)× Ω× (0, 1)

)
endowed with the inner product〈(

ŷ
p

) ∣∣∣∣ ( ẑ
q

)〉
=

∫ A

0

∫
Ω

ŷ ¯̂zdxda+ γ

∫ A

0

∫
Ω

∫ 1

0

pq̄dρdxda

where γ is a positive constant.
Now, we can state the existence result.

Theorem 2.1. Under the assumptions (H1) and (H2), for all X0 = (ŷ0, p0) ∈ D(A), the problem
(2.3)− (2.4) has a unique solution (ŷ, p) which satisfies:

(ŷ, p) ∈ C
(
[0;∞)× [0;∞);D(A)

)
∩ C1

(
[0;∞)× [0;∞);H

)
.

Proof. (Theorem 2.1)

Step 1: A is dissipative.

Let us consider (ŷ, p)T ∈ D(A)〈
A
(
ŷ
p

) ∣∣∣∣ ( ŷ
p

)〉
=

∫ A

0

∫
Ω

[
− ŷa + ∆ŷ − (µ+ µ0)ŷ

]
¯̂ydxda− γ

τ

∫ A

0

∫
Ω

∫ 1

0

pρp̄dρdxda

So,

Re

(〈
A
(
ŷ
p

) ∣∣∣∣ ( ŷ
p

)〉)
=

1

2

∫
Ω

|ŷ(0, x)|2dx− η
∫ A

0

∫
ΓN

|ŷ(a, σ)|2dσda−
∫ A

0

∫
Ω

∣∣∇ŷ(a, x)
∣∣2dxda

−
∫ A

0

∫
Ω

(µ+ µ0)|ŷ(a, x)|2dxda− γ

2τ

∫ A

0

∫
Ω

|p(a, x, 1)|2dxda

+
γ

2τ

∫ A

0

∫
Ω

|p(a, x, 0)|2dxda

=
1

2

∫
Ω

∣∣∣∣ ∫ A

0

β(a)p(a, x, 1)da

∣∣∣∣2dx− η ∫ A

0

∫
ΓN

|ŷ(a, σ)|2dσda−
∫ A

0

∫
Ω

∣∣∇ŷ(a, x)
∣∣2dxda

−
∫ A

0

∫
Ω

(µ+ µ0)|ŷ(a, x)|2dxda− γ

2τ

∫ A

0

∫
Ω

|p(a, x, 1)|2dxda

+
γ

2τ

∫ A

0

∫
Ω

|ŷ(a, x)|2dxda.

By using Cauchy-Schwarz inegality, it follows that

1

2

∫
Ω

∣∣∣∣ ∫ A

0

β(a)p(a, x, 1)da

∣∣∣∣2dx− γ

2τ

∫ A

0

∫
Ω

|p(a, x, 1)|2dxda ≤
(

1

2

∫ A

0

|β(a)|2da− γ

2τ

)∫ A

0

∫
Ω

|p(a, x, 1)|2dxda.
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Then,

Re

(〈
A
(
ŷ
p

) ∣∣∣∣ ( ŷ
p

)〉)
≤− η

∫ A

0

∫
ΓN

|ŷ(a, σ)|2dσda−
∫ A

0

∫
Ω

∣∣∇ŷ(a, x)
∣∣2dxda

−
(
µ0 −

γ

2τ

)∫ A

0

∫
Ω

|ŷ(a, x)|2dxda

+

(
1

2

∫ A

0

|β(a)|2da− γ

2τ

)∫ A

0

∫
Ω

|p(a, x, 1)|2dxda.

Therefore, choosing µ0 =
γ

2τ
+ 1 and

γ

2τ
=

1

2

∫ A

0

|β(a)|2da+ 1, we get that A is dissipative.

Step 2: λI−A is surjective for at least one λ > 0.

Let (ẑ, q) ∈ H. The equality (λI −A)(ŷ, p)T = (ẑ, q)T implies

ŷa(a, x)−∆ŷ(a, x) +
(
λ+ µ(a, x) + µ0

)
ŷ(a, x) = ẑ(a, x) in (0, A)× Ω,

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da on Ω,

(2.5)

and  pρ(a, x, ρ) + λτp(a, x, ρ) = τq(a, x, ρ) in (0, A)× Ω× (0, 1),

p(a, x, 0) = ŷ(a, x) on (0, A)× Ω.
(2.6)

Now, we consider the following auxiliary problem obtaining from (2.5)

ŷa(a, x)−∆ŷ(a, x) +
(
λ+ µ(a, x) + µ0

)
ŷ(a, x) = ẑ(a, x) in (0, A)× Ω,

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)Θ(a, x)da on Ω.

(2.7)

It is obvious that the problem (2.7) admits a unique solution. Consequently, the solution of (2.6)
is given by

p(a, x, ρ) = ŷ(a, x)e−λτρ + ŷ(a, x)e−λτρ
∫ ρ

0

eλτsτq(a, x, s)ds. (2.8)

Let us define Φ : Θ 7→ y 7→ p(a, x, 1). The goal is to prove that Φ is a contraction. Setting
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Ŷ = ŷ1 − ŷ2, P = p1 − p2, θ = Θ1 −Θ2; then Ŷ and P are solution of

Ŷa(a, x)−∆Ŷ (a, x) +
(
λ+ µ(a, x) + µ0

)
Ŷ (a, x) = 0 in (0, A)× Ω,

Ŷ (a, σ) = 0 on (0, A)× ΓD,

Ŷν(a, σ) = −ηŶ (a, σ) on (0, A)× ΓN ,

Ŷ (0, x) =

∫ A

0

β(a)θ(a, x)da on Ω,

(2.9)

and 
Pρ(a, x, ρ) + λτP (a, x, ρ) = 0 in (0, A)× Ω× (0, 1),

P (a, x, 0) = Ŷ (a, x) on (0, A)× Ω.
(2.10)

Multiplying the first equation of (2.9) by
¯̂
Y and integrating by parts on (0, A)× Ω, we obtain

1

2

∫
Ω

|Ŷ (A, x)|2dx+ η

∫ A

0

∫
ΓN

|Ŷ (a, σ)|2dσda+

∫ A

0

∫
Ω

∣∣∇Ŷ (a, x)
∣∣2dxda (2.11)

+

∫ A

0

∫
Ω

(λ+ µ+ µ0)|Ŷ (a, x)|2dxda =
1

2

∫
Ω

∣∣∣∣ ∫ A

0

β(a)θ(a, x)da

∣∣∣∣2dx.
Using (2.11) and the Cauchy-Schwarz inequality, we get∫ A

0

∫
Ω

(λ+ µ0)|Ŷ (a, x)|2dxda ≤ 1

2

∫ A

0

|β(a)|2da
∫ A

0

∫
Ω

|θ(a, x)|2dxda.

Let us choose λ+ µ0 such that λ+ µ0 > 1, then∫ A

0

∫
Ω

|Ŷ (a, x)|2dxda ≤ 1

2

∫ A

0

|β(a)|2da
∫ A

0

∫
Ω

|θ(a, x)|2dxda.

From (2.8), we have P (a, x, 1) = Ŷ (a, x)e−λτ . So∫ A

0

∫
Ω

|P (a, x, 1)|2dxda ≤ C

e2λτ

∫ A

0

∫
Ω

|θ(a, x)|2dxda

where C =
1

2

∫ A

0

|β(a)|2da. That is

∣∣∣∣∣∣∣∣p1 − p2

∣∣∣∣∣∣∣∣
L2((0,A)×Ω)

≤
√
C

eλτ

∣∣∣∣∣∣∣∣Θ1 −Θ2

∣∣∣∣∣∣∣∣
L2((0,A)×Ω)

.

Choosing λ large enough, it follows that Φ is a contraction. Thus the problem (2.5)− (2.6) admits
a unique solution by the Banach fixed point theorem. Consequently λI −A is surjective.
Since D(A) = H (see [5]), then using Lumer-Phillips theorem (see [16]) the operator A generates a
C0 semigroup of contraction in H. Consequently, we get the existence of solution of problem (2.1)
see for instance [6, 16].
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3 Strong stability

The main result of this section is given as follows.

Theorem 3.1. For all y0 ∈ L2
(
(0, A) × Ω

)
, The C0−semigroup of system (1.1) is strongly stable

on the space L2
(
(0, A)× Ω

)
.

We need the following result for the proof of Theorem 3.1.

Theorem 3.2. The C0−semigroup (etA)t≥0 is strongly stable on the space H. That is:

∀U0 = (ŷ0, p0) ∈ H, lim
t→+∞

||etAU0||H = 0.

For the proof of Theorem 3.2, we state the following results.

Lemma 3.3. The resolvant of the operator A is compact.

Proof. (Lemma 3.3)
Let λ be on the resolvant set of A, (f, g) ∈ H and (ŷ, p) ∈ D(A). Then (λI − A)(ŷ, p)T = (f, g)T

may be written as:

ŷa(a, x)−∆ŷ(a, x) +
(
λ+ µ(a, x) + µ0

)
ŷ(a, x) = f(a, x) in (0, A)× Ω,

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da on Ω,

(3.1)

and  pρ(a, x, ρ) + λτp(a, x, ρ) = τg(a, x, ρ) in (0, A)× Ω× (0, 1),

p(a, x, 0) = ŷ(a, x) on (0, A)× Ω.
(3.2)

Multiplying the first equation of (3.1) by ¯̂y and integrating by parts on (0, A)× Ω, we obtain∫ A

0

∫
Ω

(λ+ µ+ µ0)|ŷ|2dxda+
1

2

∫ A

0

∫
Ω

∣∣∇ŷ∣∣2dxda+ η

∫ A

0

∫
ΓN

|ŷ|2dσda =
1

2

∫
Ω

∣∣∣∣ ∫ A

0

β(a)p(a, x, 1)da

∣∣∣∣2dx
(3.3)

+

∫ A

0

∫
Ω

f ¯̂ydxda.

Using (3.3), Cauchy-Schwarz and young inequalities, it follows that

λ

∫ A

0

∫
Ω

|ŷ|2dxda ≤ 1

2

∫ A

0

∫
Ω

|f |2dxda+
1

2

∫ A

0

∫
Ω

|ŷ|2dxda+
1

2

∫ A

0

|β(a)|2da
∫ A

0

∫
Ω

|p(a, x, 1)|2dxda.
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Thus(
λ− 1

2

)∫ A

0

∫
Ω

|ŷ|2dxda ≤ 1

2

∫ A

0

∫
Ω

|f |2dxda+
1

2

∫ A

0

|β(a)|2da
∫ A

0

∫
Ω

|p(a, x, 1)|2dxda. (3.4)

Moreover, from (3.2) we get

p(a, x, ρ) = ŷ(a, x)e−λτρ + ŷ(a, x)e−λτρ
∫ ρ

0

eλτsτg(a, x, s)ds. (3.5)

The equality (3.5) implies that

p(a, x, 1) = ŷ(a, x)e−λτ + ŷ(a, x)e−λτ
∫ 1

0

eλτsτg(a, x, s)ds.

From the last equality, we obtain∫ A

0

∫
Ω

|p(a, x, 1)|2dxda =

∫ A

0

∫
Ω

|ŷ|2e−2λτdxda+

∫ A

0

∫
Ω

∣∣∣∣ŷe−λτ ∫ 1

0

eλτsτg(a, x, s)ds

∣∣∣∣2dxda (3.6)

+ 2

∫ A

0

∫
Ω

(
ŷe−λτ

∫ 1

0

eλτsτg(a, x, s)ds

)
dxda.

Furthermore, by using Cauchy-Schwarz and Young inequalities, we have∫ A

0

∫
Ω

∣∣∣∣ŷe−λτ ∫ 1

0

eλτsτg(a, x, s)ds

∣∣∣∣2dxda ≤ 1

2

∫ A

0

∫
Ω

|ŷ|2e−2λτdxda+
τ2

2

∫ A

0

∫
Ω

∫ 1

0

e2λτs|g|2dsdxda

(3.7)

and

2

∫ A

0

∫
Ω

(
ŷe−λτ

∫ 1

0

eλτsτg(a, x, s)ds

)
dxda ≤

∫ A

0

∫
Ω

[
|ŷ|2e−2λτ +

∣∣∣∣ŷe−λτ ∫ 1

0

eλτsτg(a, x, s)ds

∣∣∣∣2]dxda.
The last inequality and (3.7) leads to

2

∫ A

0

∫
Ω

(
ŷe−λτ

∫ 1

0

eλτsτg(a, x, s)ds

)
dxda ≤ 3

2

∫ A

0

∫
Ω

|ŷ|2e−2λτdxda+
τ2

2

∫ A

0

∫
Ω

∫ 1

0

e2λτs|g|2dsdxda.

(3.8)

Finally, (3.4), (3.6), (3.7) and (3.8) give(
2λ− 1− 3

∫ A

0

|β(a)|2da
)∫ A

0

∫
Ω

|ŷ|2dxda ≤
∫ A

0

∫
Ω

|f |2dxda+

∫ A

0

τ2|β(a)|2da
∫ A

0

∫
Ω

∫ 1

0

e2λτs|g|2dsdxda.

Choosing λ large enough, it follows that∫ A

0

∫
Ω

|ŷ|2dxda ≤
∫ A

0

∫
Ω

|f |2dxda+

∫ A

0

τ2β2da

∫ A

0

∫
Ω

∫ 1

0

e2λτs|g|2dsdxda. (3.9)
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In the same way, we obtain∫ A

0

∫
Ω

∫ 1

0

|p|2dρdxda ≤ 3

∫ A

0

∫
Ω

|ŷ|2dxda+

∫ A

0

∫
Ω

∫ 1

0

e2λτsτ2|g|2dρdxda.

So∫ A

0

∫
Ω

∫ 1

0

|p|2dρdxda ≤ 3

∫ A

0

∫
Ω

|f |2dxda+

(
3

∫ A

0

τ2|β|2da+ τ2

)∫ A

0

∫
Ω

∫ 1

0

e2λτs|g|2dρdxda.

(3.10)

Now, for ((fn, gn))n a bounded sequence in H we see from (3.9) and (3.10) that the corresponding
solution ((ŷn, pn))n is bounded in D(A). Hence ((ŷn, pn))n has a convergence subsequence in H.
Thus (λI −A)−1 is a compact operator.

Lemma 3.4. There is no eigenvalue of A on the imaginary axis, that is iR ⊂ ρ(A).

Proof. (Lemma 3.4)
By contradiction argument, we assume that there exists at least one iλ ∈ σ(A), λ ∈ R∗ on the
imaginary axis. Let V = (ŷ, p)T ∈ D(A) be the corresponding eigenvector such that ||V || = 1 and

AV = iλV,

which is equivalent to

−ŷa + ∆ŷ − (iλ+ µ+ µ0)ŷ = 0 in (0, A)× Ω,

pρ + iλτp = 0 in (0, A)× Ω× (0, 1),

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da on Ω,

p(a, x, 0) = ŷ(a, x) on (0, A)× Ω.

(3.11)

Recalling the dissipativity of A in the proof of Theorem 2.1, it follows that

0 = Re〈AV |V 〉 ≤ − η
∫ A

0

∫
ΓN

|ŷ(a, σ)|2dσda−
∫ A

0

∫
Ω

∣∣∇ŷ(a, x)
∣∣2dxda− (µ0 −

γ

2τ

)∫ A

0

∫
Ω

|ŷ(a, x)|2dxda

(3.12)

+

(
1

2

∫ A

0

|β(a)|2da− γ

2τ

)∫ A

0

∫
Ω

|p(a, x, 1)|2dxda ≤ 0.

That is ŷ(a, x) = 0 for almost every(a.e.) (a, x) ∈ (0, A) × Ω. and using the second and the last
equalities of (3.11) we get p(a, x, ρ) = 0 a.e. (a, x, ρ) ∈ (0, A) × Ω × (0, 1). Which contradicts the
fact that ||V || = 1. We conclude that A has no eigenvalue on the imaginary axis.

29
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Proof. (Theorem 3.2)

We use the spectral decomposition theory of Sz-Nagy-Foias and Foguel [3, 7, 21]. The resolvant of
A is compact from Lemma 3.3 and A has no eigenvalue on the imaginary axis from Lemma 3.4.
Following this theory, the conditions of the spectral decomposition theory of Sz-Nagy-Foias and
Foguel are satisfied. So, we get the desired result.

Proof. (Theorem 3.1)

Let us define the operator A0 on H by:

A0

(
ŷ
p

)
=

(
−ŷa + ∆ŷ − µŷ

−1
τ pρ

)
= A

(
ŷ
p

)
+ Ã

(
ŷ
p

)
,

with Ã
(
ŷ
p

)
=

(
µ0ŷ
0

)
.

Step 1: A0 generates a C0− semigroup and has a compact resolvent.

From the section 2, the operator A is an infinitesimal generator of a C0−semigroup. Moreover,
Ã is a bounded operator. Thus, from Lemma 3.2 of [3], A0 generates a C0−semigroup and has a
compact resolvent.

Step 2: A0 has no eigenvalue on the imaginary axis.

By contradiction argument, we assume that there exists at least one iλ ∈ σ(A0), λ ∈ R∗ on the
imaginary axis. Let V = (ŷ, p)T ∈ D(A0) be the corresponding eigenvector such that ||V || = 1 and

A0V = iλV,

which is equivalent to



−ŷa + ∆ŷ − (iλ+ µ)ŷ = 0 in (0, A)× Ω,

pρ + iλτp = 0 in (0, A)× Ω× (0, 1),

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da on Ω,

p(a, x, 0) = ŷ(a, x) on (0, A)× Ω.

(3.13)

We have

0 = Re
(
〈A0V |V 〉

)
= Re

(
〈AV |V 〉

)
+ Re

(
〈ÃV |V 〉

)
= Re

(
〈AV |V 〉

)
. (3.14)
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Using (3.14) and recalling the dissipativity of A in the proof of Theorem 2.1, it follows that

0 = Re
(
〈A0V |V 〉

)
= Re

(
〈AV |V 〉

)
≤− η

∫ A

0

∫
ΓN

|ŷ(a, σ)|2dσda−
∫ A

0

∫
Ω

∣∣∇ŷ(a, x)
∣∣2dxda

−
(
µ0 −

γ

2τ

)∫ A

0

∫
Ω

|ŷ(a, x)|2dxda

+

(
1

2

∫ A

0

|β(a)|2da− γ

2τ

)∫ A

0

∫
Ω

|p(a, x, 1)|2dxda ≤ 0.

That is ŷ(a, x) = 0 a.e. (a, x) ∈ (0, A) × Ω. and using the second and the last equalities of (3.13)
we get p(a, x, ρ) = 0 a.e. (a, x, ρ) ∈ (0, A) × Ω × (0, 1). Which contradicts the fact that ||V || = 1.
We conclude that A0 has no eigenvalue on the imaginary axis.
Using the spectral decomposition theory of Sz-Nagy-Foias and Foguel, we conclude that the C0−semigroup
(etA0)t≥0 is strongly stable on the space H. That is for all U0 = (ŷ0, p0) ∈ H, lim

t→+∞
||etA0U0||H = 0.

Furthermore, one can remark that

A0

(
ŷ
p

)
=

(
−ŷa + ∆ŷ − µŷ

−1
τ pρ

)
=

(
Ã∞′ 0

0 Ã∈′

)(
ŷ
p

)
.

Here, Ã∞′ ŷ = −ŷa + ∆ŷ − µŷ and Ã∈′ p = −1
τ pρ. Thus,

lim
t→+∞

||etA0U0||H = 0⇒ lim
t→+∞

||etÃ
∞
′ y0||H = 0.

So, the C0−semigroup of system (1.1) is strongly stable on the space L2
(
(0, A)× Ω

)
.

4 Exponential stability

Here, the goal is to show that the semigroup generated by the operator of system (1.1) is exponen-
tially stable. For that we use the frequency domain approach, namely the below result.

Lemma 4.1. [8, 17] A C0−semigroup (etA)t≥0 of contraction on a Hilbert space H generated by
an operator A is exponentially stable that is,

||etAU0||H ≤ Ce−ωt||U0||H, ∀ U0 ∈ H, ∀ t ≥ 0, (4.1)

for some positive constants C and ω, if and only if

iR ⊂ ρ(A) (4.2)

and

sup
β∈R

∣∣∣∣(iβI −A)−1
∣∣∣∣
L(H)

<∞. (4.3)

ρ(A) denotes the resolvent set of the operator A.

We have the following result.
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Theorem 4.2. The problem (2.3)− (2.4) is exponentially stable in the space H.

Proof. (Theorem 4.2)
From Lemma 3.4 the condition (4.2) is satisfied. Now, we will prove the condition (4.3).
Let β ∈ R and F = (f, g) ∈ H. The solution U = (ŷ, p) ∈ D(A) of the system (iβI −A)UT = FT

can be written by

ŷa(a, x)−∆ŷ(a, x) +
(
iβ + µ(a) + µ0

)
ŷ(a, x) = f(a, x) in (0, A)× Ω,

ŷ(a, σ) = 0 on (0, A)× ΓD,

ŷν(a, σ) = −ηŷ(a, σ) on (0, A)× ΓN ,

ŷ(0, x) =

∫ A

0

β(a)p(a, x, 1)da on Ω,

(4.4)

and  pρ(a, x, ρ) + iβτp(a, x, ρ) = τg(a, x, ρ) in (0, A)× Ω× (0, 1),

p(a, x, 0) = ŷ(a, x) on (0, A)× Ω.
(4.5)

Thus, we will prove that ||U ||H ≤ C||F ||H; where C a positive constant.
Remark that

Re

(∫ A

0

∫
Ω

(iβ + µ+ µ0)|ŷ|2dxda
)

=

∫ A

0

∫
Ω

(µ+ µ0)|ŷ|2dxda.

So, using the same calculations as in the proof of Lemma 3.3 and choosing µ0 large enough, it
follows that ∫ A

0

∫
Ω

|ŷ|2dxda ≤
∫ A

0

∫
Ω

|f |2dxda+

∫ A

0

τ2|β|2da
∫ A

0

∫
Ω

∫ 1

0

|g|2dsdxda (4.6)

and

γ

∫ A

0

∫
Ω

∫ 1

0

|p|2dsdxda ≤ 3γ

∫ A

0

∫
Ω

|f |2dxda+ γ

(
3

∫ A

0

τ2|β|2da+ τ2

)∫ A

0

∫
Ω

∫ 1

0

|g|2dsdxda.

(4.7)

The inequalities (4.6), (4.7) and

∫ A

0

τ2|β|2da = τγ − 2τ2 lead to

∫ A

0

∫
Ω

|ŷ|2dxda ≤
∫ A

0

∫
Ω

|f |2dxda+ τγ

∫ A

0

∫
Ω

∫ 1

0

|g|2dsdxda (4.8)

and

γ

∫ A

0

∫
Ω

∫ 1

0

|p|2dsdxda ≤ 3γ

∫ A

0

∫
Ω

|f |2dxda+ γ(3τγ)

∫ A

0

∫
Ω

∫ 1

0

|g|2dsdxda. (4.9)

From (4.8), (4.9) and setting C = 2 max
{

max{1, τ},max{3γ, 3γτ}
}

we obtain the desired result,

that is ||U ||H ≤ C||F ||H. Therefore
∣∣∣∣(iβI − A)−1

∣∣∣∣ is bounded. From Lemma 4.1, the semigroup
of problem (2.3)− (2.4) is exponentially stable in the space H.
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Theorem 4.3. Assume that

µ(a) >
1

2

(
1 + 3||β||L2(0,A)

)
, ∀ a ∈ (0, A). (4.10)

Then the problem (1.1) is exponentially stable in the space L2
(
(0, A)× Ω

)
.

Proof. (Theorem 4.3)
Let B0ŷ = −ŷa + ∆ŷ − µŷ. From Theorem 3.1, iR ⊂ ρ(B0). Consider β ∈ R and f a function in
L2
(
(0, A)× Ω

)
such that for ŷ ∈ D(B0), (iβI − B0)ŷ = f. The objectif is to prove that

||ŷ||
L2
(

(0,A)×Ω
) ≤ C||f ||

L2
(

(0,A)×Ω
);

where C a positive constant. We have

Re

(∫ A

0

∫
Ω

(iβ + µ)|ŷ|2dxda
)

=

∫ A

0

∫
Ω

µ|ŷ|2dxda.

Using the same calculations as in the proof of Lemma 3.3, we get∫ A

0

∫
Ω

(
µ− 1

2
− 3

2
||β||L2(0,A)

)
|ŷ|2dxda ≤

∫ A

0

∫
Ω

|f |2dxda+

∫ A

0

τ2β2da

∫ A

0

∫
Ω

∫ 1

0

|g|2dsdxda.

(4.11)

By choosing g = 0 in (4.11) and using (4.10), we obtain∫ A

0

∫
Ω

|ŷ|2dxda ≤
∫ A

0

∫
Ω

|f |2dxda.

Then,
∣∣∣∣(iβI − B0)−1

∣∣∣∣ is bounded and we conclude with the Lemma 4.1.

Remark 4.1. The condition (4.10) implies that the basic reproduction number R0 =

∫ A

0

β(a)e−
∫ a
0
µ(s)dsda

satisfies R0 < 1.
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Paris, 1967.

[22] Y. Wang, X. Liu, Y. Wei, Dynamics of a stage-structured single population model with
state-dependent delay, Advances in Difference Equations (2018) 2018 : 364

34
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