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1 Introduction

Our aim is to study the following problem

N
_;;xiai(x,aiiu)—i—ﬁ(u) 5f inQ
u=~0 onI
P(p, f.d) i (1.1)
+Z/FN€ 8% wni=d onTy,
u = constant on I' e,

where, d € R and p is a continuous and non decreasing function on R, € is a open bounded domain in
RY (N > 3) such that dQ is Lipschitz and 92 = I'p UT . with I'p NT y. = () which means that I'p
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and I'y, are partitions of the border 92 of 2. The right-hand side f € L'(Q) and n;, i € {1,..., N}
are the components of the outer unit normal vector. § = 95 is a maximal monotone graph in R
with dom(3) bounded on R such that 0 € 5(0).

For any € RV, we set

Ci () ={heC(Q): %gh@)>1} (1.2)
and we denote
h* = sup h(x), h™ = inf h(z). (1.3)
zEQ z€Q

For the exponents, p(.) : @ — RY, 5(.) = (p1(.), ..., pn(.)) with p; € C(Q) for every i € {1,...,N}
and for all z € Q. We put pys(z) = max{p1 (), ...,pn(z)} and p,,(z) = min{p; (x), ...,pn(2)} .
Note that j is a nonnegative, convex and l.s.c. function on R and, dj is the subdifferential of j.
We set

dom(B) = [m, M] C Rwithm <0< M (1.4)

We assume that for ¢ = 1,..., N, the function a; : Q@ x R — R is Carathéodory(i.e. a;(z,€) is
continuous in £ for a.e. z € Q and measurable in z for every £ € R) and satisfies the following
conditions :

e (Hp) : There exists a positive constant C; such that

jai(z, )] < Cr(Gi(a) + [€[71 7, (1.5)

for almost every x € Q) and for every £ € R, where j; is a non-negative function in LPQ(')(Q),
1 1
with —— 4+ —— =1
pi(z)  pi(z)

e (Hs) : There exists a positive constant Cy such that

Cal€ =P if € —n| > 1,
(ai(z, &) —ai(z,n)(§ —n) = - (1.6)
Col§ —nfPe i |E—n <1,
for almost every x € € and for every &, n € R, with £ # n.
e (Hj3) : For almost every = € 2 and for every £ € R,
€7 < ay(, )€ (1.7)

e (H,) : We also assume that the variable exponents p;(.) : @ — [2,N) are continuous
functions for all ¢ = 1, ..., N such that

N

1 1 1

where - = — E i
p N i=1 41

e (Hj) : pis a continuous and non decreasing function on R such that

D(p) = Im(p) = R and p(0) = 0.
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We introduce the numbers

Np-1) , N N(p—1
qz%f 1)761 :Nq _Ne-b) (1.9)
- —q N-p

The interest to study problems with variable exponents instead of constant exponent is linked to a
large scale of applications that involve some nonhomogeneous materials (blood for example). It is
already known that for an appropriate treatment of these materials, classical Sobolev and Lebesgue
spaces are not adequate, so we have to allow the exponent to vary. We can refer here to electrorheo-
logical fluids (see [T}, 9} 21]) thermorheological fluids, modelling of propagation of epidemic disease
(see [3]), image restoration (see [§]). In order to answer to the preoccupation for the nonhomo-
geneous materials that behave differently on different spaces direction, the anisotropic space with
variable exponents are introduced.

It is not a surprise to meet new difficulties when passing from isotropic variable exponent to ani-
sotropic variables exponents. To overcome these difficulties, we combine the classical techniques
with the recent techniques that have appeared when treating anisotropic problems with variables
exponents.

The first systematic study of anisotropic Neumann problem was done by Fan (see [12]). After that,
Boureanu et al. studied anisotropic nonhomogeneous Neumann problem with obstacle (see [6]).
In the two papers, the authors were interested by the existence and multiplicity results of weak
solutions even if in [6], Boureanu et al. have showed some conditions under which they can get
uniqueness of weak solution.

All papers tackling the issues about have considered particular cases (see [5l [I4] and the refe-
rences therein). The main interest in our work is that we are dealing with general non-linearities /3
which is a multivalued datum.

Regarding the border, in a recent paper, Kaboré and Ouaro used the technique of monotone ope-
rators in Banach spaces (see [17]) and approximation methods to get the existence and uniqueness
of entropy solutions of the following problem,

N
B ; a%%, % w)+ |uP @2y = f inQ

uw=0 onl'p

N
0
(T, z—u)n; =d
plu) +i_zl/rNea (@ 3xiu)n on I' ye.

u = constant

(1.10)

Our aim is to prove the existence and uniqueness of renormalized and entropy solutions to the
general elliptic problem (L.1)).

Non-local boundary value problems of various kinds for partial differential equations are of great
interest by now in several fields of application. In a typical non-local problem, the partial differen-
tial equation (resp. boundary conditions) for an unknown function u at any point in a domain 2
involves not only the local behavior of u in a neighborhood of that point but also the non-local
behavior of u elsewhere in ). For example, at any point in {2, the partial differential equation
and/or the boundary conditions may contain integrals of the unknown u over parts of Q, values of
u elsewhere in D or, generally speaking, some non-local operator on u. Beside the mathematical
interest of nonlocal conditions, it seems that this type of boundary condition appears in petroleum
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engineering model for well modeling in a 3D stratified petroleum reservoir with arbitrary geometry
(see [10] and [13]).

Since we assume that the domain of § is bounded, it appears in the definition of the solution, a
bounded Radon diffuse measure in order to take into account the border of the domain. The tech-
niques used in this work are close to those used in [15] [19].

The paper is organized as follows.In Section 2, we give some preliminaries about anisotropic Sobo-
lev spaces of variable exponents and state our main result. Section 3, we study an approximated
problem and in Section 4, we study the regularized problem corresponding to . In the Section
5, we prove the existence and uniqueness of entropy solution of problem by using the results
of the Section 4.

2 Preliminaries

This part is related to Lebesgue space and anisotropic Sobolev spaces of variable exponents
and some of their properties.
Given a measurable function p(.) : Q — [1, 00). We define the Lebesgue space with variable exponent
LP1)(Q) as the set of all measurable functions u : Q — R for which the convex modular

Pp() (1) ::/Q|u|p("”)dx

is finite.
If the exponent is bounded, i.e, if p4 < oo, then the expression

. u
||y := inf {)\ >0: pp(.)(x) < 1}

defines a norm in LP(-)((2), called the Luxembourg norm. The space (LP()(Q),|.|,(.)) is a separable
Banach space. Then, LP()(Q) is uniformly convex, hence reflexive and its dual space is isomorphic
, 1 1
to LP')(Q), where — + —— =1, for all z € Q.
(0, where Sy @)
Finally, we have the Holder type inequality.
Proposition 2.1. (see [11])

(i) For any u € LPO)(Q) and v € L )(Q), we have

/ dr| < (1 1)| v
uvdx + w3V (Y-
o P p()1Yp'()

(i) If p1,p2 € C+(Q), pi(z) < pa(z) for any x € Q, then LP2()(Q) — LP()(Q) and the
imbedding is continuous.

We have the following properties on the modular p).
Lemma 2.2 (see [I1]). If u,u, € LP)(Q) and p™ < oo, then

+ -
lulpy <1= |U|Z(,) < pp()(u) < |U|Z(,)v (2.1)

4
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Julpy > 1= Jul’ ) < pyro () < ul’y) (2.2)
lulpy < U= 1> 1) = ppey(u) < 1(=1;>1) (2.3)

and
[unlp) = 0(p(.) = 00) & pp()(un) = 0(p(.) = 00). (2.4)

We introduce the definition of the isotropic Sobolev space with variable exponent,
WP (Q) = {u e LPO(Q) : |Vu| € LPO(Q)} ,
which is a Banach space equipped with the norm

Hqu,p(.) = |u|p(.) + |vu|p(-)'

We denote by M(Q2) the space of bounded Radon measure in €2, equipped with its standard norm
|- A, (). Note that, if v belongs to My(€2), then |u|(€2) (the total variation of ) is a bounded
positive measure on .

Given p € My(2), we say that p is diffuse with respect to the capacity Wol’p(')(Q)(p(.)-capacity for
short) if yu(A) = 0, for every set A such that Cap,(A4,) = 0.

For every A C Q, we denote

Sy (A) = {u e Wy (Q)NCy(Q) : u=1o0nA,u>0onQ}.
The p(.)-capacity of every subset A with respect to € is defined by

Capy (4. = _inf ([ 1Vup ).

In the case Sp()(A) = 0, we set Cap,,(,(A4,Q) = occ.

The set of bounded Radon diffuse measure in the variable exponent setting is denoted by M} ) Q).
Now, we present the anisotropic Sobolev space with variable exponent which is used for the study

of.

The anisotropic variable exponent Sobolev space W1P()(Q) is defined as follow.

~Ou

WP (Q) == {u e LP0O(Q) e LP(Q), for all i € {1, ...,N}} .
Endowed with the norm
ou

N
lullsy = Tl + D | 5

i=1 pi(.)
the space (WP (Q), ||.|l5.)) is a reflexive Banach space (see [12], Theorem 2.1 and Theorem 2.2).

As consequence, we have the following.

Theorem 2.3. (see [12]) Let @ C RY (N > 3) be a bounded open set and for alli € {1,....,N}, p; €
L>(Q), pi(x) > 1 a.e in Q. Then, for any r € L>(Q) with r(z) > 1 a.e. in Q such that

ess ;Iég(p]\/[(l‘) —r(x)) >0,

we have the compact embedding .
WPO(Q) — L7O(Q).
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We also need the following trace theorem due to [6].

Theorem 2.4. Let Q C RY (N > 2) be a bounded open set with smooth boundary and let j{(.) €
C () satisfy the condition

L<r(@) < min{p{(2), .. pR(2)}, Vo € 00, (2.5)
where for all x € 0N,
(N = Dpi(z) .
W)= N PO
00 ifpi(z) > N.

Then, there is a compact boundary trace embedding
WHPO(Q) — LO(69Q).
Let us introduce the following notation :

- =(pr,-Py)-

Finally, in this paper, we will use the Marcinkiewicz spaces M?(Q2) (1 < ¢ < oo) with constant
exponent. Note that the Marcinkiewicz spaces M‘J(')(Q) in the variable exponent setting was intro-
duced for the first time by Sanchon and Urbano (see [22]).
Marcinkiewicz spaces M?(€2) (1 < ¢ < o) contain all measurable function h : © — R for which the
distribution function

An(y) = meas({z € Q: [h(z)] > 1), 72 0,

satisfies an estimate of the form A, (y) < Cvy~ 9, for some finite constant C' > 0.
The space M?(€2) is a Banach space under the norm

* 1 (1 ‘ *
||hHMq(Q) =supts <t/ h (5)d5>a
t>0 0

where h* denotes the nonincreasing rearrangement of h :
h*(t) :=inf {C : \p(7) < Cy79, ¥y > 0},

which is equivalent to the norm [|h[|} 4, o) (see [2]).
We need the following Lemma (see [4], Lemma A-2).

Lemma 2.5. Let 1< g < p<+oo. Then, for every measurable function u on €,

(i) ( Ll e < sup (¥measle € 2 u] > N} < 1l 0,

(i1) / |u|dx < p—(7)7|| ||Mp(Q (meas(K)) 7", for every measurable subset K C Q.

In particular, MP(Q) C L (Q), with continuous injection and u € MP(Q) implies [ul? € M ().

loc

We give some useful convergence results.
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Lemma 2.6 (see [20]). Let (8,)n>1 be a sequence of maximal monotone graphs such that 8, — 8
in the sense of graphs (i.e. for (x,y) € B, there exists (Xn,Yn) € Bn such that x, — = and
Yn — y). We consider two sequences (zn)n>1 C L'() and (wy)n>1 C L' (). We suppose that :
Vn > 1wy € Bu(2n), (Wn)n>1 is bounded in L*(Q) and 2, — 2z in L(Q2). Then z € dom(B).

The following result is due to Troisi (see [23]).

Theorem 2.7. Let py,...,py € [1,+00), § = (p1,--,pn) ; g € WHP(Q), and let

q=7p" if p* <N, (2.6)
qe[l,+o0) if p*>N; '

* N N 1 —% Nﬁ
where p = W’ Zizl i >1 cmdp = m
=1 pi

Then, there exists a constant C > 0 depending on N, p1,...,pn if p < N and also on q and meas(2)
if p> N such that

N ag *~
lolzsin < eI [lallion + 15 | (2.7

i=1

where pyyr = max {p1,...,py} and % = % Efil pi In particular, if u € W&’ﬁ(ﬂ), we have

N ¥
lgllzae) < CH U ] . (2.8)
i=1 Lri(Q)

In the sequel, we consider the following spaces (see [16, [17, [1§]).

9g
sz-

and
WP (@) = {¢ € Wllp’ﬁ(')(ﬂ) : & = constant on 'y, }.
T57(Q) = {€ measurable on Q such that Vk > 0, T(€) € W5 (Q)}
and ) )
T]\l,’ep(')(ﬂ) = {¢€ measurable on § such that Vk > 0, T} (&) € WI{[’S(')(Q)},
where
kooifs>k,
Te(s)=1qs  if]s| <k,
—k ifs< —k.

For any given [,k > 0, we define the function h; by hy(r) = min((l+1 — |r[)*,1).
For any [y, we consider the function hy = h;, defined by

(2.9)

ho € Ccl(R), ho(?“) >0, Vr e R,
ho(r) =1if |r| <lp and ho(r) = 0if |r] > 1y + 1.



A. Kaboré et al./ jmpao Vol. 1 N°2(2022)

For any v € W]i,’f(')(ﬂ), we set Une i= V|ry., -
We recall the definition of the main section of a maximal monotone graph.
Let § be a maximal monotone operator defined on R. The main section dg of § is defined by

the element of minimal absolute value of §(s) if 6(s) # 0,
(50(8) = o0 if [S,OO) ﬂD((S) :Q,
S if (—oo,s] N D(§) = 0.

We write for an v : Q@ = R and k > 0, [Ju| < k(< k,> k,> k,= k)] for the set {x € Q; |u(x)] < k(<
k> k> k= k).

The concept of solution for (1.1]) is given as follows.

Definition 2.8. A solution of 1| is a triple (u,w,v) € Tj\l,’f(')(Q) x LYHQ) x R, u € dom(B)LN -
a.e. in Q, w € Bu)LN-a.e. in Q, there exists j € Mf’”(')(Q) with p L. LN, p* is concentrated on
{u= M} and p~ is concentrated on {u=m}, v = p(u) and

N
0 0
/ Zai(x,—u) ® dx+/wcpdm+/g0du: /fgodqu(dfv)cpNe, (2.10)
q \ 4 Ox; ~0x; Q Q Q
=1

Yo € WP () n Lo ().

Remark 2.9. If (u,w,v) is a solution of the problem (1.1)) then, it satisfies the following entropic

formulation
Y N
/Q (Z a;(z, a—wu)a?Tk(u - f)) dzr + /Q wly(u — &)dx <
i—1 i i

(2.11)
/Qka(u —&)dx + (d — )Tk (une — &),

for all € € Wi,’f(‘)(ﬂ) N L>®() such that & € dom(B)LN -a.e. in Q.
Our main result is the following.

Theorem 2.10. Assume that (1.4)-(L.8) hold true and (f,d) € L*(Q) x R, there exists a unique
entropy solution to problem (1.1)). Moreover,

pi(z)

ou
ox i

lim
10 Jin< | <nt1]

dz = 0. (2.12)

Before proving Theorem 2.10, we study an auxiliary problem from which, we deduce useful a priori
estimates.

3 Approximated problem for continuous functions

We define a new bounded domain © in RY as follow (see Figure 1 below). We consider a fixed

arbitrary ¢ > 0, we consider the open bounded domain {2 D , given by R
Q= Qu{z € RV /dist(z,T ye) < 0}. Here, we consider 6 > 0 small enough such that 9<2 is Lipschitz
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and T'p C 9. Then, let us denote by Iy, = 9 \T'p.

Figure 1: Domains representation

Let us consider a;(z,§) (to be defined later) Carathéodory and satisfying (L.5), (1.6) and (1.7)), for
all x € Q. ~ R
We also consider a function d in L(T'x.) such that

/ ddo = d. (3.1)
FNe

For any € > 0, we set f. = T1(f) and f. = f.xa, de = T1(d) and we consider the problem

-3 i ) + ) = fo im0
P(i), ﬁv ~€7 ~€) Ue = 0 on FD (32)
N 9 _ ~
ﬁ(uﬁ) J’_;ai(xva_xiue)ni = d. on I'ye,

where the functions b and j are defined as follow.

o b(z,s) = b(s)xa(z), ¥(z,s) € Q x R, where b is a continuous non-decreasing function such
that D(b) = Im(b) = R and b(0) = 0.

* i(s)

= |f‘ ‘p(s), where |f‘N5| denotes the Hausdorff measure of T ..
Ne

We obviously have Ve > 0, f. € L=(Q), d. € L®(Tn.). o
The following definition gives the notion of solution for the problem P.(b, g, fe, d.).
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Definition 3.1. A measurable function u. : Q — R is a solution to problem P( D, fe, J) if
Ue € Wé’p(')(fl) and

/ Zal f §dx+ / ue)édr = / fdx + /F Ne(de—ﬁ(ue))gda, (3.3)

for any € € Wé’ﬁ(')(fl) N L>®(Q).

Thanks to Theorem 3.1 in [I7], P(b, p, f.,d.) has at least one solution u and |u| < C(b, k1) a.e. in
Q and |u| < C(p, ke) a.e. on 'y, where k1 and ko are defined as follow

{bwe,m < oy 1= max{ biey; (bo p~)(|ldl1)} ave. in @, -

1p(te,r)| < ko = max{w (pob 1) (mretitar A )}ae on I'ye.

meas(Ty.)’ meas(Q)

4 The regularized problem corresponding to (|1.1))

For every € > 0, we consider the Yosida regularization 3. of 8 given by

fe= (= (I+eB)™),

and we set

1
Je(s) —melﬂrg{|5—r|2 +j(r )}, Vs € R, Ve > 0.

According to Proposition 2.11 in [7], we have

dom(8) C dom(j) C dom(j) C dom(5).
Je(s) = §|ﬂ€( $)|2 +7(J.), where J. = (I +¢8)7 !,

Je is convex, Frechet-differentiable and 8. = 97,
jetjaselo.

Now, we set a;(x,&) = a;i(z,§)xa(z) +

PIEP 2 exg o (@) for all (z,€) € A xR,

p(:c

Be(z,8) = Be(s)xa(x) for all (z,s) € Q x R. . o
We consider the following problem denoted by P.(fS, g, fe, d¢)

N L($)—2
8 1 8 P 0 - .
Z ( ue)xe(z) + epi(@) 81’ (%UeXQ\Q(m)> + Be(ue)xo = fe  inQ
Ue = O on FD
i AN . i
p(u6)+zai(x7%ue)ni = Ue on I'ye.
i=1 v

10
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So, there exists at least one measurable function u. :  — R such that

N pi(z)—2 9 9 -
;/ﬂ ai(2, 5~ 3 5dx+2/m epi(@) Ue o Uen—E | dv

(4.2)
—|-/Qﬁe(u5)§dx—/gf55dx+/fw(d — (ue))fda
where u, € W57 () and £ € WLV (Q) 0 L=(Q).
Moreover, by (3.4} ., we have
Beluo)] < ky = max { mhliey: (B pg (1) } e in €, s

~ d ~ _ 1 ~
|(ue)| < ky = max{ﬁl(‘fm; (5o B: 1)(mggg(m)} a.e. on I'ye.

The next result gives a priori estimates on the solution u. of the problem PG(B67 s fes JE)
Using the same argument as in [I7], we have the following results.

Proposition 4.1. Let u. be a solution of the problem Pe(/}e,ﬁ, ﬂ,cﬂ). Then, the following state-
ments hold.

(i) Vk >0,
3 9 pie) ol 1 0 pi(x) 3
S [ (grma)  ary [ (Camtel) ek, o)
(it)
/ |5e(ue)|d%+/f p(ud)ldo < |\l gy + 1l
Ne
(iii) Vk > 0,
ol pila) i
;/ﬁ axiTk(ue) dz < k([ldll L2y, + 1122 @)-

Lemma 4.2. Assume (L.4)-(L8), f € L*(2) and de L'(Tne). Let uc be a solution of the problem
(Be, b, fe, E) Then there 18 a positive constant D such that

(1+k)
kpm—1

meas{|uc| > k} < DPm , Yk > 0.

Lemma 4.3. Assume (L4)-(L8), f € L'(Q) and d € L' (Tne). Let u. be a solution of the problem
(BE, D, fo.d ¢). Then there is a positive constant C such that

24

Lemma 4.4. Assume (L4)-(L8), f € L'() and d e L' (Tn.). Let u, be a solution of the problem
(ﬁe, s ferd ¢). For all k > 0 there is two constants C1 and Cy such that :

Tk(ue)

P
< . .
oz, ) de <C(k+1), VE>0 (4.4)

11
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(i) ||“e||Mq*(Q) <Cyi;

(i) | e

i

Mp:q/p(ﬁ) < 02'

Proposition 4.5. Assume (L4)-(L8), f € L'(Q) and d e L*(Tn.). Let uc be a solution of the
problem P(Be, p, fe,d.). Then,

(i) Te(ue) = Tk(u) a.e. in Q;

(ii) ue — w in measure, a.e. in Q and a.e. on Ty ;

(iii) For alli = 1,..N, 2Z0lte) _ OT

y) = 04n LPO(Q\ Q) ;

o0x; o0x;
. . 3Tk(u€) R BTk(u) Y P
(iv) For alli=1,..N, o2, oz, =0in LP (Q\ Q).

Remark 4.6. It is easy to see that u € dom(P) a.e. in Q. Indeed, using Proposition 4.2-(i) and
Lemma 2.3, we deduce that for all k > 0, Tx(u) € dom(B) a.e. in Q and as dom(B) is bounded, we
deduce that w € dom(pB) a.e. in Q.

Lemma 4.7. j(u) € L'(Tn.).

Lemma 4.8. Assume that (1.4)-(1.8)) hold true and u. be a weak solution of the problem P(BE, by fe, (26)
Then,

0 .
(i) ——ue converges in measure to
e}

;i &viu '
T, T /
(it) ai(z, 0 giue)) — ai(x, 881;(u)) strongly in L*(Q) and weakly in LP')(Q), for all
i=1,..N.

Proposition 4.9. For any k >0 and anyi=1,...,N , as € tends to 0, we have

o i) 10
() e, TR I DT T
o 2 010

a.e. in §2,

a.e. in 2 and strongly in L'(Q),

strongly in LPi()(€).

Lemma 4.10. For anyi=1,..N, h € CX(R) and ¢ € Wi,’f(')(ﬁ) N L>®(Q),

0 0
81‘1' (h(’UJE)QO) - 8.131'

(h(u)p) strongly in LP*)(Q) ase — 0.

Proof. Forany i =1,..N, h € C}(R) and ¢ € W]{,’f(‘)(Q) N L>(£2), we have
A(h(ue)p A(h(u)p u u u
(ucde) _ ORIE) — (h(ue) — hw)) B2 + Wk [ — 2] + (W(wd) — W (w))p 2
= WS + W + WS,

12
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For the term U{, we consider

. ago pi()
(8D = [ (b = h) 52| da.
Q Li
Set )
pi(x
01(0) = (h(u) ) 37
We have O5(z) — 0 a.e. x € Q as e — 0 and
_ o pi(z)
O5@) < Chp.p)) | 5| € L'

Then, by the Lebesgue dominated convergence theorem, we get lir% Pp()(¥1) = 0.
e—

Hence,
||\Di||Li"i(~>(Q) — 0, ase — 0.

For the term ¥§, we consider

(3 (P5) = B (ue — d
oo (85) = [ [(uyp |2 - 2 "
for some ! > 0 such that supp(h) C [-1,1].
Set -
OTi(ue)  OTy(w)] "™
€ _ / —
03(2) = [i/(u)g | Tt -
We have O5(z) — 0 a.e. x €  as € — 0 and
B aTl (Ue) aTl (u) pi(T)
€ < K + —
05(0)] < Clh iy ol [T - Z5E
. . . oTi(ue) 0Ty (u)
Using Proposition 4.3 — (iii), we get ll_I)T(l) Ppi() ( o5, om, = 0. Then,
pi(z)

— 0 strongly in L'(Q).

OTi(uc) _ 9Ti(u)
65(}7; 65(}7;

The Lebesgue generalized convergence theorem allows to have

e—0

tim [ ©5(a)de = lm (%) = .

Hence,
”\IIZHLM(«)(Q) — 0, ase — 0.

For the term VU$, we consider

. o1 (u pi(z)
ppm)(‘l’g):/Q 1(w)

(B (we) = b)),

dx,

13
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for some ! > 0 such that supp(h) C [-1,1].

Set @
05(0) = | () — e
We have O5(z) — 0 a.e. x € 2 as € — 0 and
e -+ OTi(u) |,
05(0)] < Clhpi ol lelw) | o | € (@)

By the Lebesgue dominated convergence theorem, we get

e—0

fim | ©5(a)dz = liny ) (¥5) = 0.
Hence,
1950 Lricr (o) — 0, as € = 0. (4.8)
Thanks to (4.6) — (4.8), we get
H‘Ifl + Wy + \IIEHLPH-)(Q) — 0, ase — 0,

and the lemma is proved. O

5 Existence and uniqueness of entropy solution

5.1 Existence of entropy solution

We are now able to prove the result of existence of entropy solution of the problem (|1.1)) announced
in Theorem 2.10.

0Ty (u)
8.”L'i .
Yk > 0, Ti(u) = constant a.e. on Q \ Q. Hence, we conclude that u € Tl\lf’p(')(Q).

€

Let ¢ € Wi,’f(')(Q) N L*>(£2). We consider the function ¢; € W[l,’ﬁ(')(fz) N L*>(£2) such that

Proof. Thanks to Proposition 4.2 and as Vk > 0, Vi =1, ..., N, =0in L? (Q\ Q) , then

p1 = PXa + PNeXa\ai

we set € = hy(ue)gy (see (2.9) for the definition of hy by taking Iy = k), in ([£.2) to get
pi(x)—2 0

EI—V;/Q (ai(x’ fﬁiue)@ii(hk(ue)@o de
O, ’ (hk(“e)sﬁNe)> dz+

o (e
— Jovo \ e @ 0w, ox; 0z,

[ Aetwtutuods = [ fntueda+ |

FNe

Jhk(”e)‘pNedU - [ ﬁ(ue)hk(ue>90NedU-

FNe

(5.1)

14
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We need to pass to the limit in (5.1]) as € — 0. Note that

,z:/ﬁ (ai(x,aiu 8?5 (hi(ue)p )dm—Z/ ( (ue));%(hk(ue)@) dz,

since supp(hy) C [—k, k], then, by Lemma 4.5-(ii) and Lemma 4.10,

ygg)z | (e g gt )czx—z | (o g i) g s)9) )

that is

1%; /Q (ai(x,(;;ue) ai (B ()0 )dm - Z / ( ai (hk(u)go)> de.  (5.2)

For the second term in the left hand side of (5.1)), we get

0 0
1 (z)—2 _
!%Z /z\sz (61’1(1) |8:v el O0x; ;¢ Oz; (hk(ue)@N‘f)> dz = 0. (5.3)

Indeed,
0 0
pi(z)-2 Y ¢ h .
Z/Q\Q <€pm(x) |ax 6| 61‘Z Ue axl( k(ue)@Ne)) €T

e _/ < Ty (ue > Ry (ue)dx.
7 Jaen(uc<k] \€ ox; k

As |ue| <k, hy(ue) =1 and so k) (u.) = 0.

Therefore,
3 [ (e
=1 JO\Q epi(®) 9z €

Hence, we get (5.3)).
It is easy to see by the Lebesgue generalized convergence theorem that

pi(z)—2

0 0
%ue oz, (hk(ue)cpNe)) dx = 0.

lim /Q fehn (e pdz = /Q fhi(w)pdz,

e—0

lim/ czehk(ue)apNedU:[ Jhk(u)¢NedU.

=0/ . I'ne

(5.4)

We know that Vk > 0, T (u) = constant on Q \ ©, then, it yields that u = constant = uy. on Q \Q
and so on I'y.. So, one has

lim thk(uE)goNedo = [ Cth(u)(pNedO'
FNe

e—0 FN

hk(uNe)goNe[ d~d0

I'ne

15
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Using ,
lim dehy(ue)onedo = dhy(une)ne. (5.5)

e—0 Fae

For the last term in (5.1), we have

ﬁ ﬁ(ue)hk(ue)‘pl\feda = @Ne/: ﬁ(uﬁ)hk(ue)da.
T'ne T'ne
Since p is non-decreasing and supp(hy) C [k, &,

(e (ue)| < max{p(—k), p(k)} € L' (Txe).

By the Lebesgue dominated convergence theorem, we deduce that

lim plue)hi(ue)pnedo :/ plune)hi(une)pnedo = p(une)hr(une)pNe. (5.6)

=0 1:‘1\75 Ine

Let us examine the last term in the left hand side of (5.1]).
Since, for any k > 0, (hg(uc)Be(ue))e=o is bounded in L'(€2), there exists 2z, € M;(Q), such that

hi(ue) Be(ue) =" 2k, in Mp(Q2) as e — 0.

Moreover, for any ¢ € Wi,’f(')(Q) N L>(Q),
/ gOde = / fhk U Qde + dhk(uNe)LpNe - p(uNe)hk(uNe)<PNe
Q

—Z/( . ) ({0} ) da

= / [fhk(u)w + ﬁ(m (dhi(une)pne — p(uNe)hk(uNe><PNe):| dx
—Z / (e s (n(10)) o
_ /Q Fhy(u)pdz — ; /Q (ai(x, a%“) 81 (hk(u)¢)> iz,

where F' = (f — deFNe’) € Ll(Q)
Therefore, zj, € Mg"‘(')(Q) and for any k <,

zp = 21, on [Ty (u)| < kJ.

Let us consider the Radon measure p defined by

(5.7)

Ti(u)| = k].

z =z, onl[|Ty(u)| <k]fork e N*,
z=0, on Ngen~ |

16
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For any h € C}(R), h(u) € L®°(£2,d|z|) and it is easy to see that for any ¢ € Wji,’f(‘)(Q) N L>®(Q),

/ u)odz = [ [fh<u>¢+1(9)(dh(umme—p(wdh(m)m) dx

meas

Z / ( 631 (h(u)gp)) da.

Moreover, one has the following lemma.

Lemma 5.1 (see [20]). The Radon-Nikodym decomposition of the measure z given by (5.7) with
respect to LN,

(5.8)

v=wl 4+ p, withp L LY,

satisfies the following properties

we Bu)LN — a.e. inQ we LY(Q), pe MEmI(Q),
u't is concentrated on [u = M],

and p~is concentrated on [u = m].

To finish the proof of Theorem 2.10, we consider ¢; € Wé’ﬁ(‘)(fl) N L>®(Q) and h € C}(R). Then,
we take h(u.)p1 as test function in (4.2) to get

f:/ (ai(x’ iu 6?: (( )dx+2/\9 (Gpl z)|8x [P 238 8(21( (ue)@zve)) d

/Be ue)h(ue)pda = / feh(ue godx+/ dh (ue)pnedo —/ pluc)h(ue)pnedo.
I'ne I'ne

~ (5.9)
By the Lebesgue generalized convergence theorem and as u = constant on Q \ Q, it follows that

ti [ fh(u)eds = [ fh(upds,
—0Jg i Q (5.10)
hm/ deh(ue)QONedU:dh(uNe)(pNa

e—0 TNe

The first term of (5.9) can be written as

i | (e ) 0t )dm—Z [ (0. 5 Tifu) o)) )

for some Iy > 0; then, by Lemma 4.5-(ii) and Lemma 4.6,

55’%2/ (oo g 010 ) EE%Z | (o i) - () )
- Z [ (oo gt g o)) o
= Z / ( ai(h(u)@)) dz.

17
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For the second term of (|5.9), one has

0 0
pi(x)—2 _
E%Z [)\Q <EP7($) |ax E| a 81‘2( (uE)QONC)) dl’

N

1 0 pi(z) ,
li e —| =T, (u, ho(ue)dx = 0.
> one [ (Flggmuel) oG

For the last term of (5.9), one gets

lim ﬁ(UE)h(ue)@NedU = p(uNe)h(uNE)‘PNe = vh(uNe)SDNea

e—0 FNe

where v = p(upe).
Thanks to the convergence results in Lemma 5.1 and Lemma 4.5 — (4¢), one gets from (5.9),

iy [ tuobueds = [ [fh(U) ﬁ( e one ~ plune)h(uxcone) | dr

e—0
—Z/Q< o ;(h(u)gp)> de
/h(u)cpdu:/ﬂh(u)wgodx+/ h(u)pdy.

Q Q

Letting € goes to 0 in (5.9)), one obtains

8
Z/ (h(u)p) d5E+/ h(u)wcpd:r+/ h(u)pdy = / fh(uw)edz+(d—v)h(une)Pne.
8302 81‘1 Q Q Q
(5.11)
In (5.11), we take h € C}(R) such that [m, M] C supp(h) C [—1,1] and h(s) = 1 for all s € [, 1].
As u € dom(f3), then h(u) =1 and it yields that (u,w,v) is a solution of the problem (L.IJ).
5.2 Uniqueness of entropy solution

We are now ready to prove the result of uniqueness of the entropy solution of problem (1.1)) an-
nounced in Theorem 2.10. Indeed, let (u1, w1y, v1) and (ug, we, v2) be two entropy solutions of ([1.1)).
For (u1,ws,v1), we take p = ugy as test function and for (ug, wa, v2), we take ¢ = uy as test function

in (2.11)), to get for any k > 0,

/ iw(az iu )iT(u — ugy) dx—l—/wT(u — ug)dx <
Qi:1173$1’15’17ik1 2 | wililn —up)dw <

(5.12)
/Q FTo(ur — us)dz + (d — v1) () ve — (uz)xe)

and

8
/ <Z a;i(z, =— 33:, Ty (ug — u1)> dxr + /Q wo Tk (ug — uq)de < (5.15)

/Q STz — u1)da + (d — v2) T ((uz) v — (ur)ve)-

18
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By adding (5.12)) and ( -7 we obtain
N
0 0 0
/le_; (az‘(m, 87%”1) —a;(z, (%Zuz)> aTciTk(“l — ug)dzx

(5.14)
+ / (w1 — wQ)Tk(ul — u2)dx + (Ul — ’UQ)Tk((UQ)Ne — (Ul)Ne) S 0.
Q
For any £ > 0 and from it yields
N
/Q; (ai(x, %ul) —a;(z, (’fclw)) %Tk(ul —ug)dz =0, (5.15)
and
(’Ul — Ug)Tk((UQ)Ne — (ul)Ne) = 0 (516)

From (5.15) — (5.16)), it follows that there exists a constant ¢ such that u; —us = ¢ a.e. in Q and
v1 = vg. At last, let us see that w; = wq a.e. in  and py = po. Indeed, for any ¢ € D(), taking
¢ as test function in (2.10) for the solutions (u1, w1, v1) and (ug,we,v2), after substraction, we get

/Q(wl — wa)pdz + /Q ed(p1 — p2) = 0.

/w1<p+/<ﬂdu1:/wzs0dx+/wuz-
Q Q Q Q

wlﬁN + M1 = wgﬁN + Ha.

Hence,

Therefore,

Since the Radon-Nikodym decomposition of a measure is unique, we get
wy = ws a.e. in Q and gy = po.

To end the proof of Theorem 2.10, we prove (2.12).
We take & = Ty (u. — T (u.)) as test function in (2.10) to get
pi(w)—2 o 9

8
Z/ a;(z f ¢) oz, — T (e — T (ue) da:JrZ/ <€pl(m) axiuea—xiﬂ(ue Tn(ue))> dx

—|—/QBE(U6)T1(u6 — Th(ue))dx = /QfeTl e — T (ue))dz + /fNe(dE — pue)) Ty (ue — T (ue))do.

Ue

(5.17)
Since /Qﬂe(ue)Tl(u€ — Th(ue))dx > 0, /f“Ne p(ue)Th (ue — T (ue))do > 0 and

pi(w)—2 9 o
Z/Q ( Lo T"“‘é”) e
1 o @
s dx >
lel fQ\Qn[n§|u6|§n+1] <6p1(m 33:1 x>0,
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from equality (5.17)), it follows that

N
Z/ ai(x,iue)iuedxﬁ / feTi (ue—Ty (ue))do+ d Ty (ue—Ty (ue))do. (5.18)
[n<|ue|<n+1] Ox;  Ox; Q f

i=1 Ine

By using the Lebesgue generalized convergence theorem and the Lebesgue dominated convergence
theorem respectively, we prove that

lim lim/ feTi(ue — Ty (ue))dz =0 (5.19)

n—0e—0 Q
and

lim lim d. Ty (ue — Ty (ue))do = 0. (5.20)

n—0e—0 Cye

Using (1.7)), it follows by letting ¢ — 0 and n — 0 respectively in (5.17]),

N
lim lim g / dr = lim E /
n—0e—0 i=1 Y [n<lue|<n+41] n—0 [n<|u|<n+1]

Therefore, we get (2.12)). O

pi(r)
dx <0. (5.21)

pi(x)

—
ox; © 8:132
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